
1 August 1997 Delphi Informant

August 1997, Volume 3, Number 8

QuickReport!
Delphi’s Native Reporting Tool

Cover Art By: Tom McKeith

ON THE COVER
5 QuickReport 2.0: Part I — Cary Jensen, Ph.D.
QuickReport 2.0 is Delphi 3’s standard-issue reporting tool; here’s how
to use it effectively. This first installment demonstrates how to create,
print, and preview QuickReports.

10 Extending QuickReport: Part I — Keith Wood
QuickReport is a great add-on for Delphi 2, but these extensions make it
even better: a one-piece database grid component, and the ability to
print only selected pages.

FEATURES
17 Informant Spotlight
NNiiccee aanndd NNiicceerr — Peter Roth
In other tongues, a “nice” class is one for which the programmer pro-
vides needed methods. But what defines “nice” in ObjectPascal, and
how can classes be reused — or misused? Here’s the story.

23 On the Net
HHoopp oonn PPoopp — Gregory Lee
POP (3) goes Delphi! It may be better to give than receive, but this
month we learn how to retrieve e-mail with Delphi, and why the task
requires a separate protocol.

27 Columns & Rows
TThhee PPaarraaddooxx FFiilleess:: PPaarrtt VV — Dan Ehrmann
You know how to manipulate the Paradox file format. But how do you
keep it secure? By learning about password protection and Paradox
encryption, along with Paradox Table Language options.

31 Greater Delphi
BBaatttteenniinngg tthhee HHaattcchheess — Bill Todd
Another security primer: This third in a series about (encryption-free)
InterBase takes on database vulnerability. But not before considering
that of the physical surroundings and the OS.

34 Visual Programming
YYoouurr FFiirrsstt CCoommppoonneenntt EEddiittoorr — John Ayres
Component editors, as the name implies, are perfect for allowing develop-
ers to custom-configure components. Creating this one for TPanel can start
you down the road to proficiency.

39 OP Tech
CCoommppoonneenntt CCrreeaattiioonn — Dan Miser
We’d just as soon avoid the possible pitfalls of the intricate process of
component creation. To this end, Mr Miser offers these VCL component
construction guidelines.

43 Delphi at Work
SSeerrvviinngg MMaannyy MMaasstteerrss — James Callan
Mr Callan demonstrates various ways DataSource components can function
dynamically with DataSets to implement many-to-many relationships.

REVIEWS
55 AppVision’s GenerationXpert

Product Review by Alan Moore, Ph.D.
58 Delphi Component Design

Book Review by Alan Moore, Ph.D.
58 Building Internet Applications with Delphi 2

Book Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
4 Newsline
60 File | New by Richard Wagner

2 August 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

IISSBBNN:: 0-7821-2052-0
PPrriiccee:: US$49.99

(1,476 pages, CD-ROM)
PPhhoonnee:: (510) 523-8233

Mastering Delphi 3
Marco Cantù

SYBEX
HREF Tools Corp.
announced WebHub 1.0 is
now shipping. Commer-
cially available as an early
experience package since
October 1995, WebHub
uses Delphi 3 Client/Server
Suite to provide a frame-
work for building scalable
Web applications.

A development environ-
ment for Delphi 2 and 3,
WebHub offers component-
based solutions for multi-
user state management, per-
sistent database connectivity,
and HTML page generation.

WebHub’s components
transparently handle the
CGI interface for ISAPI,
NSAPI, CGI-win, and
CGI-bin. It also provides
developers with the tools to

HREF Tools Launches
WebHub 1.0
write applications for use
with Windows NT Web
servers. WebHub can be
used as middleware for
ActiveX, Java, and JavaBean
clients, providing function-
ality not found in JDBC.

Price: Starts at US$365 for a single
developer. WebHub licensing agree-
ments range from US$95 to US$1,955
per server, based on capacity.
Contact: HREF Tools Corp., 300 B St.,
Ste. 215, Santa Rosa, CA 95401
Phone: (707) 542-0844
Fax: (707) 542-0896
E-Mail: WebHubSales@href.com
Web Site: http://www.href.com
CT-Connect Now Available from Plains Technology

TTable, TDataSource, and
TBatchMove components.
CT-Connect uses CTree
Plus’ data types in single-
or multi-user mode. Also,
CTree Plus programmers
will no longer be required
to maintain data dictionary
files or limited index types.

CT-Connect can be used
as an addition to the BDE,
or as its replacement. By
choosing the CTree and

BDE together, developers
can join tables of differ-
ent types to CTree data
files. To replace the BDE
with the CTree only,
developers must distrib-
ute 151KB DLLs with
their applications.

CT-Connect ships with
CT-Expert, a database tool
that allows Delphi devel-
opers to create, modify,
and browse CTree data-
base files. CT-Expert also
allows users to copy table
structures; add, copy, and
delete indexes; copy tables
between table formats; dupli-
cate tables; create book-
marks; display IO perfor-
mance on reads/writes; and
index and buffer use, index-
ing views on-the-fly, setting
filters on-the-fly, and more.

CT-Expert also takes
advantage of reading and
writing the CTree Plus IFIL
and DODA structures in
the data files, eliminating
the need for external dictio-
nary files.

At press time, a Delphi 32-
bit version was planned for
release in June from the
Plains Technologies Web site.

Price: CT-Connect 1.0
(includes CT-Expert) US$299;
or CT-Expert US$99.
Contact: Plains Technologies,
Inc., Wellington Square, 1619
S. Kentucky, Annex D, Ste.
1000, Amarillo, TX 79102
Phone: (806) 359-3650
Fax: (806) 352-6974
E-Mail: frazors@arn.net
Web Site: http://www.plainstech.com
Plains Technologies, Inc.
of Amarillo, TX has
released CT-Connect 1.0,
bringing the FairCom
CTree Plus database engine
to Delphi.

Written in Delphi for use
with Delphi, CT-Connect
offers migration of data
between CTree Plus data
files and Delphi supported
databases. It also maintains
the methods of Delphi’s

3 August 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

DDeevveellooppiinngg CCuussttoomm DDeellpphhii 33
CCoommppoonneennttss
Ray Konopka

Coriolis Group Books

IISSBBNN:: 1-57610-112-6
PPrriiccee:: US$49.99

(725 pages, CD-ROM)
PPhhoonnee:: (800) 410-0192
Pinnacle Publishing Releases Graphics Server 5.0

Pinnacle Publishing’s

release of Graphics Server 5.0
adds server-side graphing
capabilities to Delphi, Visual
Basic, Visual C++, Borland
C++, Visual FoxPro, and oth-
ers. In addition, Graphics
Server 5.0 adds support for
the Internet.

New features in Graphics
Server 5.0 include Web image
file output with automatic
map file creation for “hot-
graphing.” Version 5.0 also
includes date labels on the X
axis, tilt and thickness con-
trols for 3D pie charts, addi-
tional box-whisker styles,
missing data for overlay
graphs, and more.

Graphics Server supports a
variety of graph and chart
types, including 2D and 3D
bar, area, pie, and scatter, as
well as log/lin, log/log, high-
low-close, open-high-low-
close, candlestick, box
whisker, gantt, bubble, sur-
face, and times series. Also
supported are statistical lines,
trend lines, and curve fitting.
A built-in end-user interface
option also lets users edit and
save graphs.

Graphics Server 5.0 will
ship with VBX, OCX, and
ActiveX support.
Logic Process Ships DataSentry Data Maintenance Utility and SelfCheck API

Process’ DataSentry provides
database table validation and
repair for Delphi developers.
Through integration with the
BDE and table maintenance
libraries, DataSentry supports
development of 16- and 32-bit
desktop database applications.

DataSentry’s data mainte-
nance capabilities include

table validation
and repair (data
and index), as
well as table pack,
copy, delete,
empty, rename,
and clone func-
tions. All applica-
ble operations
may be per-
formed on any
selection of tables
in a single ses-
sion. Tables may
be automatically
backed up before
repair, clone
tables or a Table Structure
File may be employed to
ensure the success of the
rebuild process.

Logic Process has also
released the SelfCheck Data
Maintenance API, a set of
database maintenance rou-
tines which can be integrat-
ed into your applications.
The SelfCheck API enables
developers to implement a
specific level of validation
and repair.

A trial version, site licenses,
and electronic distribution
with online Help are available.

Price: DataSentry, US$89 (single
CPU); current introductory special for
DataSentry and SelfCheck bundle,
US$99 (regularly US$139).
Contact: Logic Process Corp., 10610
Metric Rd., Ste. 110, Dallas, TX 75243
Phone: (214) 340-5172
Fax: (214) 341-9104
E-Mail: sales2@tradelogic.com
Price: US$349
Contact: Pinnacle Publishing, P.O. Box
4620, Seattle, WA 98104
Phone: (800) 231-1293 or
(206) 625-6900
Fax: (206) 625-9102
E-Mail: ppi@pinpub.com
Web Site: http://www.pinpub.com
Logic Process Corp. of
Dallas, TX has released the
DataSentry Data Mainten-
ance Utility, a Windows 95
and Windows NT 4.0 desk-
top database maintenance
solution for Paradox and
dBASE tables.
Extending Borland’s

Database Explorer, Logic

4 August 1997 Delphi Informant

News
L I N E

Augus t 1997
Borland Files Suit Against M
Scotts Valley, CA — Borland

has filed a lawsuit in California
Superior Court in Santa Clara
County against Microsoft.
The lawsuit charges Microsoft
with recruiting and hiring
Borland employees for the
specific purpose of damaging
Borland’s ability to compete
with Microsoft in the devel-
opment tools market, and to
slow the company’s financial
turnaround.

In the past 30 months,
Microsoft has hired at least
34 of Borland’s top software
architects, engineers, and
marketing managers,
according to a complaint
prepared by Wilson,
Sonsini, Goodrich & Rosati.
Softbite Announces 1997 Del
icrosoft for Unfair Competitio
According to the suit,

many of these employees
now hold strategic posi-
tions at Microsoft, mirror-
ing the roles they played at
Borland. Microsoft has
used large signing bonuses
of several millions of dol-
lars and other incentives
as a means of wooing
Borland employees.
s
T

phi/C++Builder World Tour
n
Borland’s lawsuit seeks

unspecified financial dam-
ages and an immediate end
to Microsoft’s practice of
targeting Borland employees
in order to hamper the com-
pany’s ability to compete.

Borland employees and ex-
employees are not being
sued as part of the legal
action.
Delphi 3 Includes Microsoft
Scotts Valley, CA —

Borland announced its
Delphi 3 includes
Microsoft’s Internet
Explorer (IE) 3.0 Web
browser free of charge. As
part of Borland’s Golden
Gate strategy, Borland’s
 Internet Explorer 3.0
Windows 95 and Windows
NT development tools can
create Internet and intranet
applications that support IE
and other Web browsers,
Web servers, and most
databases.

Delphi 3 allows develop-
ers to build ActiveX com-
ponents without requiring
separate run-time files.

Users can create ActiveX
forms and controls from
scratch, or turn an existing
Delphi or Borland
C++Builder VCL compo-
nent into an ActiveX com-
ponent. Delphi developers
can create ActiveX compo-
nents for use in many
development tools, includ-
ing IntraBuilder, Visual
Basic, Microsoft Office, IE,
C++, Java, and Power-
Builder.

For more information on
Delphi 3, call Borland at
(800) 233-2444, or visit
http://www.borland.com.
Borland Unveils Multi-Tier Di
Services Suite for Windows N

Scotts Valley, CA — Borland
has announced the Multi-Tier
Distributed Application
Services (MIDAS) Suite, a set
of middleware technologies for
Windows NT distributed
application development. The
result of technologies from
Borland and its Open
Environment division,
MIDAS is compatible with
the Entera cross-platform mid-
dleware for larger-scale, higher-
transaction, and heterogeneous
systems.
Application servers built with

MIDAS offer 24-hour, seven-
day-a-week reliability, opti-
tributed Application

mized network performance,
and a thin-client architecture
for application maintenance,
distribution, and configura-
tion. Delphi 3 will be the first
of Borland’s development tools
to build MIDAS-enabled
applications.
The MIDAS Suite consists of

the Business ObjectBroker, the
Remote DataBroker, and the
ConstraintBroker. The suite is
priced at US$5,000 per server,
with volume discounts and
special VAR licensing available.
For more details, visit

http//www.borland.com/-
midas/ or call (408) 431-1064.
with Java

Addison, IL — Borland, The

DSW Group, Softbite
International, and Informant
Communications Group have
announced the 1997
Delphi/C++Builder World
Tour (with Java).
This World Tour is a five-

day event. The first three days
focus on Delphi 3 and
C++Builder. The last two
days cover Java, highlighting
JBuilder.

Seminars began in July and

Atlanta Orlando
Boston Philadelphia
Charlotte Phoenix
Chicago Salt Lake City
Columbus San Diego
Dallas San Francisco
Denver Seattle
Houston Washington,DC
Los Angeles Calgary
Minneapolis Ottawa
New Jersey Toronto
New York Vancouver

Stops On The World Tour
will continue through
November. World Tour
attendees receive: a copy of
Delphi 3 Professional or
C++Builder Professional (a
US$795 value); a copy of
JBuilder (if attending the 2-
day Java/JBuilder session); a
trial subscription (three
issues) to an Informant pub-
lication; documentation and
code samples containing
Delphi, C++Builder, and
JBuilder code; and a copy of
the Informant magazines at
the event.

The Delphi World Tour is
US$1,295 for five days;
US$845 for three days;
US$595 for two days; and
US$345 for one day.
Discounts are available for
three or more attending
from the same company.

For details contact
Softbite International at
(630) 833-0006, or visit
http://www.softbite.com/tour.
Borland Appoints New CFO
Borland has appointed

Kathleen M. Fisher, 42, to the
position of chief financial officer.
Fisher brings more than 15 years
of experience with multinational
computer and software compa-
nies such as AST Research Inc.,

Western Digital Corp., and
Softbank Content Services Inc.
She succeeds Paul W. Emery,

who recently left Borland.
In addition to overseeing

Borland’s financial management,
Fisher will be responsible for
Borland’s information systems

and operations.
Fisher’s appointment is the lat-

est in a series of new executive
appointments by Delbert W.

Yocam. Other recent executive
appointments at Borland include
Rick LeFaivre as chief technology
officer and John Floisand as vice

president of US Sales.

5 August 1997 Delphi Informant

QuickReport 2.0: Part I
Delphi 3’s Upgraded Reporting Capabilities

On the Cover
Delphi 3

By Cary Jensen, Ph.D.

Fig
stra
Delphi 3 includes QuickReport 2.0 as its reporting tool. Simply put,
QuickReport is a VCL-based (Visual Component Library) set of components

that permit you to easily include reports in your executables or DLLs. This
month’s article begins a two part series on QuickReport. This first part covers
the basic techniques used to create, print, and preview QuickReports. Next
month’s article will demonstrate how to create several more-complicated report
types, a custom report previewer, as well as generate reports at run time.
The version of QuickReport that ships with
Delphi 3 represents a significant upgrade
over the 1.0 version included with Delphi 2.
As a result, many of the components includ-
ed in QuickReport 2.0 are different in name
and usage from those components previously
available. Fortunately, the changes greatly
increase QuickReport’s utility, and simplify
the process of building sophisticated reports.

The new version of QuickReport features:
a basic report that requires fewer com-
ponents than the same report in
QuickReport 1.0
ure 1: The main form of the QuickReport demon-
tion project.
a more visual interface
printing in a background thread (In
fact, the TQuickRep class implements
the PrintBackground method, which
automates the process of printing a
report in a background thread.)
report generation on-the-fly
new components (For example, com-
ponents for printing expressions, dis-
playing the contents of RichText data
base fields, as well as a TeeChart com-
ponent for including business graphs in
QuickReports.)
the ability to combine two or more
reports using a composite report
support for third-party products

This series is intended as an overview, not
an in-depth exploration of all aspects of
QuickReport. As a result, a selection of
reporting techniques are demonstrated, but
these represent only a fraction of
QuickReport’s capabilities. These tech-
niques are demonstrated in the project
named quickrep.dpr (see Figure 1).

For additional information on
QuickReport, consult the quickrep.hlp file
stored in Delphi 3’s Help subdirectory. You
can also look at qrpt2man.doc, a Word doc-
ument that serves as the primary source of
documentation on QuickReport. (You can

Figure 2: The Report expert icon in the Delphi 3 Object
Repository.

On the Cover

Figure 3: A blank QuickRep component.

Subproperty Description
HasColumnHeader Use this band to print column headings for

tabular reports.
HasDetail A detail band is printed once for each

record in the master DataSet of the report.
HasPageFooter This band is printed at the bottom of each

page in the report.
HasPageHeader This band is printed at the top of each

page in the report.
use the Windows 95 WordPad if you don’t have Word.) This
document file can be found in the Delphi 3 \Quickrep
subdirectory. In addition, visit the QuSoft Web site at
http://www.qusoft.no. Consider visiting this site occasion-
ally for updates to the QuickReport units.
Figure 4: Here are the Bands subproperties.

HasSummary This band is printed on the last page of the
report. It displays report-wide summary
statistics.

HasTitle A title band is printed once at the begin-
ning of the report and can be used for a
cover sheet.
QuickReport Basics
You create a QuickReport by adding a QuickRep component
to an existing project. To demonstrate a new QuickReport,
create a new project and save this project as quickrep.dpr.
In all, there are four required steps for creating a
QuickReport:
1. add a QuickReport to an existing project,
2. define the bands of the QuickReport,
3. attach the QuickReport to a dataset, and
4. add one or more printable elements to the QuickReport.

In the following sections, we’ll review these steps, and investi-
gate QuickReport’s additional features.
Adding a QuickReport
There are two ways to add a QuickReport to a project.
You can create a new form and add a QuickRep compo-
nent from the QReport page of the Component palette.
Alternatively, you can select File | New and click on the
Report icon in the Object Repository (see Figure 2). This
second technique is easier. I prefer to use a form, because I
can more easily add code that is executed when the form
and QuickRep component are created and released. Once
completed, the QuickReport will resemble Figure 3.
Defining the Report Bands
With QuickReport 2.0, you don’t have to explicitly add
bands to a QuickRep component. Instead, use the Property
Inspector for the QuickRep component to define the bands
to appear on the report. You do this by expanding the Bands
property, then setting its subproperties you want to appear
to True. There are six Bands subproperties (see Figure 4).

In addition to these types of bands, other bands can be added
to a report. These include group header and footer bands,
6 August 1997 Delphi Informant
SubDetail bands, and ChildBands. (These band types are
described later in this article, as well as in next month’s col-
umn.) For our purposes, set the Bands subproperties
HasColumnHeader, HasDetail, HasPageFooter, and
HasPageHeader to True.
Attaching the QuickReport DataSet
If the report will include data from a database, you must use
a DataSet. This DataSet can be placed on the QuickRep

component (or its form), or it can reside on a
DataModule. If you place the DataSet in a DataModule,
avoid using this same DataSet for user interface elements
such as DBGrids. This prevents the QuickReport from
being printed in a background thread, or as the user is
applying the user interface element. For our report, a sin-
gle table will be placed on the QuickRep component. Set
the table’s DatabaseName property to DBDemos, the
TableName property to customer.db, and the Active prop-
erty to True. Next, attach the QuickRep component to the
DataSet by setting the QuickRep’s DataSet property to
Table1.

If the QuickReport has a Detail band, one copy of the
Detail band will be printed for each record in the DataSet.
However, you can place filters or use ranges (tables only) on
the DataSet to limit the records printed. For example, if you
have a table and want to print a particular group of records,

Component Description

Figure 5: Printable elements on a QuickReport.

QRLabel Static, single line of text.
QRDBText Used to display a field or memo from a

DataSet.
QRExpr Used to display the value of an expression.
QRSysData Used to display system and report data, such

as the date, the time, page number, record
number, etc.

QRMemo Used to define multiple lines of static text.
QRRichText Similar to QRMemo, except it can include

formatted text.
QRDBRichText Used to display data from a DataSet’s format-

ted memo field.
QRShape Shape component for a QuickReport.
QRImage Used to display bitmaps.
QRDBImage Used to display bitmaps from a DataSet.
QRChart Used for creating a TeeChart on a QuickReport.

On the Cover
use a filter or range to limit the DataSet to that group. Only
those records in the filter or range will be printed.

You can also use indexes to control the order that records are
printed. Furthermore, you can create calculated or lookup
fields for a DataSet, then print them as you would any other
field in a table.
Placing Printable Elements
Figure 5 lists the QuickReport components for displaying text
or data on a QuickReport. The primary printable components
you will use are QRLabel and QRDBText. The QRLabel
components are used for simple text, and the QRDBText
components are used for fields in the DataSet (including
memo, calculated, and lookup fields). The QuickReport
shown in Figure 6 uses QRLabel components for the report
title and column headings, while QRDBText components are
used for fields. Note also the use of various font properties,
including bold face, color, a larger font size for the report title,
and the underline font style for the column headings. Creative
use of fonts can greatly improve the appearance and readabili-
ty of your reports.

The report in Figure 6 also includes several QRSysData
components. These components print information about
the report, including the date and time of the report print-
ing, page number, and so on. There are two properties of
the QRSysData component that you will want to set. The
first is Data. This defines the type of information to be
7 August 1997 Delphi Informant

Figure 6: The SimpleFrm form uses QRLabel and QRDBText compo
nents, as well as QRSysData components.
included in the field. For example, to display a page num-
ber, set Data to qrsPageNumber. If you want to display the
date and time the report was printed, set Data to
qrsDateTime.

The second important property of the QRSysData compo-
nent is Text. This property will prefix the displayed data
with a text string. In Figure 6, the Text property is set to
Page . Note the use of the space after the ‘e’ in Page. This
was necessary to separate the text Page from the actual
page number. Without this space, the text would run into
the page number.
-

Previewing a QuickReport at Design Time
You can easily preview your QuickReport while you are design-
ing. To do so, right-click on the QuickRep component and
select Preview. The QuickReport default previewer is displayed,
and the report appears. This version of QuickReport is multi-
threaded. As a result, the previewer will display the first page of
the report as soon as it is formatted. However, QuickReport
may continue to format additional pages. Consequently, if the
report is long, using the default previewer’s VCR-style controls
to see the last page of the report will only allow you to view the
last formatted page.

QuickReport components, like many other components in
Delphi, permit you to add code to event handlers. This code
can be used to control various aspects of the printing or pre-
viewing of a report. However, because event handlers are not
executed when a report is previewed at design time, the image
previewed at design time may be quite different from that
produced at run time (if you’ve written event handlers that
affect the report output).
Using a QuickReport in an Application
You may never display a QuickRep component to a user at
run time. For example, if you place a QuickRep component
on a form, you do not display the form to the user. Instead,
call the QuickRep’s Preview or Print methods (or alterna-
tively, its PrintBackground method).

For example, imagine the simple report is on a form named
SimpleFrm and it includes a QuickRep component called
QuickRep1. The following code creates this form, previews
the report using the default QuickReport previewer, and
releases the form when complete:

SimpleFrm := TSimpleFrm.Create(Self);

SimpleFrm.QuickRep1.Preview;

SimpleFrm.Release;

If you wanted to print the report instead, you could use:

SimpleFrm := TSimpleFrm.Create(Self);

SimpleFrm.QuickRep1.Print;

SimpleFrm.Release;

Figure 7 shows a simple report in the default QuickReport
previewer. This previewer is automatically created and dis-
played when you call the QuickRep method Preview.

Figure 7: The default QuickReport previewer displaying a
QuickReport.

Figure 8: The ChildBand form from the QuickRep project.

On the Cover
Printing in a Background Thread
With QuickReport 1.0, it’s not possible to print a report in
a background thread. This is because the QuickReport
component in version 1.0 can only be linked to a Data-
Source, and not directly to a DataSet. You can’t have a
DataSource point to a DataSet that is active in a back-
ground thread.

Now that version 2.0 links directly to a DataSet and doesn’t
require a DataSource, threaded QuickReports are possible.
Normally, this would require you to create a separate Session
and Database for the thread. Fortunately, this is not neces-
sary. The TQuickRep class includes PrintBackground, a
method that performs all the necessary steps. Consequently,
this single line of code is all that is required to print a
QuickReport in a background thread:

SimpleFrm.QuickRep1.PrintBackground;

Background thread printing requires you to take a number
of steps to ensure the report works properly. First of all, as
mentioned previously, the report can’t use DataSource
components. While in a single table QuickReport this is
easy enough; however, reports that require multi-table links
pose a problem. Typically, to link one table to another you
must use a DataSource that points to the master table of
the link. (This DataSource is assigned to the detail table’s
MasterSource property.) Because you can’t use a
DataSource, you must perform the link through code.
(The creation of a master-detail QuickReport that can be
used in a background thread will be covered in next
month’s article.)

When printing in a background thread, you’ll need to consid-
er when to release the report. This is especially important
because you don’t want the report to be created automatically.
Instead, you’ll want to create the report when it’s needed, and
release it when it’s finished. By only creating the report when
needed, you limit the resources required by the application.
8 August 1997 Delphi Informant
The simple solution to this problem is to create the report
immediately prior to printing it, and then free the form on
which it appears from its OnClose event handler. You do this
by setting the Action parameter of the OnClose event handler
to caFree. This is demonstrated in the code from the OnClose
event handler for the form SimpleFrm:

procedure TSimpleFrm.FormClose(Sender: TObject;

var Action: TCloseAction);

begin
Action := caFree;

end;
Using Child Bands
There is an additional band style that you’ll often include in
a report — even when it contains only a single DataSet —
the ChildBand.

A ChildBand is used to display data from a record that
either varies in size, or may be absent altogether. For exam-
ple, if you have a record that includes a RichText memo
field, you might want to place the QRDBRichText compo-
nent in a ChildBand. This ChildBand will automatically
resize at run time, depending on the size of the memo
being printed. If the memo field is empty, the ChildBand
is simply not printed.

Although the QReport page of the Component palette
includes a QRChildBand component, you won’t actually
place this component in most cases. Instead, you’ll set the
HasChild property of an existing band (a Detail band, a
SubDetail, or even another ChildBand) to True. For exam-
ple, if you set the HasChild property of a Detail band to
True, QuickReport automatically places the ChildBand
below the Detail band. You can then resize the ChildBand
as necessary, and place printable QuickReport components
within it (see Figure 8).

A ChildBand itself has a HasChild property. This permits a
ChildBand to have a ChildBand, which in turn may have
another ChildBand. In fact, the QuickReport in Figure 8
has three ChildBands. The first ChildBand displays the
Notes field (a memo field) from the Biolife.db table that
ships with Delphi. The second ChildBand contains a fixed-

Figure 9: The QuickReport Report Settings dialog box.

On the Cover
sized field (Category). The third ChildBand contains a
QRDBImage, which is used to display the bitmap stored
in the Biolife.db Graphic field.

While a given ChildBand is not printed if the field or
fields it contains are empty, the suppression of a given
ChildBand has no effect on other ChildBands associated
with the same data record. For example, if the Notes fields
for a particular record are empty, the first ChildBand is
not printed. However, as long as the Category and
Graphic fields of that same record contain data, those
ChildBands are printed.
Using the Report Settings Dialog Box
QuickReport comes with a component editor that permits
you to easily modify QuickReport’s properties. To display
this editor, right-click a QuickRep component and select
Report Settings. QuickReport responds by displaying the
dialog box shown in Figure 9.

From this dialog box you can easily adjust paper size and
orientation, margins, and column spacing, as well as set the
default font. You can control the presence, size, and color
of a page frame, select bands for the report and adjust their
size, and preview the modified report.
Conclusion
Next month, we’ll conclude this series with a look at how
to create several different types of reports, including mail-
ing labels, one-to-many reports, and composite reports.
You will also learn how to create custom QuickReport pre-
viewers, as well as how to create new reports at run time. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\AUG\DI9708CJ.
9 August 1997 Delphi Informant
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor
of Delphi Informant, as well as a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://gramercy.ios.com/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com.

10 August 1997 Delphi Informant

Extending QuickReport: Part I
Custom Features Can Save Trees and Sanity

On the Cover
Delphi 2 / QuickReport

By Keith Wood

Figure 1: The toolbar for
QuickReport is a great add-on that allows reports to be written in native
Delphi code and compiled into an executable. It prints information from

databases, complete with field-change breaks and grand totals.
QuickReport could be improved, however.
For example, the default report previewer
doesn’t allow the printing of only selected
pages. Also, a database grid component
would be a great addition. For simple
reports, it’s sometimes annoying to drop
each column separately, then each header,
and then try to line everything up. Instead,
we could just drop one grid, and have it
automatically display the fields from the
data source.
Customizing the Previewer
QuickReport provides a default report pre-
viewer that allows us to view the report at
normal size, at full width, or with the whole
page scaled to fit. We can sequentially “step
through” the pages of the report, or jump
straight to the first or last pages. Reports can
be saved, then reloaded at a later time; and of
course, the entire report can be printed.

But what if we want to view the report at
other resolutions? Or jump to a particular
page in the body of the report? Or print only
the one page in which we’re really interested?
Fortunately, QuickReport gives us the tools
to write our own report previewer, so we can
have it do whatever we want.
 the new previewer.
The most important piece in writing a new
previewer is the QRPreview component.
This handles the presentation of the
QuickReport; we need only tell it what we
want it to do. Open a new form, drop a
Panel component on it, and set its
Alignment property to alTop. This holds the
controls through which we can interact
with the preview component (see Figure 1).
Then drop a QRPreview component onto
the body of the form, and set its Alignment
property to alClient, so it fills the remain-
der of the form.
Zooming In
As mentioned, we want to add the ability
to view the report at other resolutions,
specifically 50%, 75%, 150%, and 200%,
in addition to the standard 100%, full
width, and whole page. Rather than desig-
nate buttons for these choices, we use a
combo box. This provides a text descrip-
tion of the zoom factor, and is more explic-
it than button images.

The QRPreview component provides a
property and two methods to deal with the
magnification of the report being shown:
Zoom, ZoomToWidth, and ZoomToFit. The
first can be assigned the numeric zoom fac-
tor as a percentage, while the second fits
the page’s full width into the viewer, and
the third shows the whole page. Mapping
from the selection in the combo box to the

On the Cover
appropriate property or method is easily done by using a
case statement based on the index of the item selected (see
Figure 2).

To complicate matters, we’re adding a pop-up menu that also
allows the zoom factor to be changed. The same options
appear on the menu, and can be processed like those of the
combo box by assigning appropriate values to their Tag prop-
erties, i.e. their correspondence to the indexes in the combo
box list (plus one to facilitate other processing). The menu
items have one entry checked to show which resolution is
currently in use. To keep this and the combo box synchro-
nized when either changes, we set the combo box item index
from the passed Tag value (after subtracting one, because the
indexes start at zero). We then search through all the menu-
item components, and set the Checked flag when the item’s
Tag is equal to the current value, clearing all the others.
Page Navigation
Another of our wishes is the ability to immediately jump to
any page. The QRPreview component provides a PageNumber
property we can read to obtain the number of the currently
displayed page, or write to to move to a different page. This
property can be set through the previewer.

We add the standard page-navigation buttons to the control
panel on our form: first, previous, next, and last pages. In the
middle of these, we place an edit box for entry of a particular
page number, and a label to show us the total number of
pages. This latter value is obtained from the QRPrinter object.
11 August 1997 Delphi Informant
QuickReport automatically creates a QRPrinter object for each
application, and uses it to generate the reports for both print-
ing and previewing. One of its properties is PageCount, which
gives us the total number of pages in the current report.

The current page number is set as the initial value of the
edit box. This can be overwritten by the user to move to
another page, but must be checked so that it doesn’t
exceed the bounds of the report. The new page number
can’t be checked on the OnChange event of the edit box,
because the user may still be entering the value. This check
must wait until the user exits the field, triggering an
OnExit event, or until R is pressed, generating an
OnKeyDown event.

In each case, the application tries to convert the entered text
to a number, and if successful, checks that the number lies
within the range of pages for the current report. If either of
these fails, the application aborts the procedure and returns to
the original page number. If everything is okay, the previewer
shows the specified page.

The navigation buttons simply set the page number in the
previewer component appropriately. There is no need to
check for reaching the start or end of the report when pro-
cessing the previous- and next-page buttons, because they are
enabled only when they are valid.

Menu items appear in the pop-up menu corresponding to the
navigation buttons. To make these easier to reach with the
mouse, a break is inserted in the menu, causing them to be
shown in a new column alongside the zoom options. Set the
Break property of the first-page menu item to mbBarBreak.

A common procedure, CheckPages, is called to alter the
display after any change to the current page. It updates the
edit box with the current page number, and enables or dis-
ables the navigation buttons and menu items, according to
the position of the displayed page. This is done by com-
paring the current page number with the start or end of
the report. All of this can be seen in Listing One, begin-
ning on page 15.
Printing
Our last big wish is to be able to print only portions of the
report. In the standard previewer, the entire report is
printed when we press the print button. This calls the
Print method of the QRPrinter object. Further examina-
tion reveals FromPage and ToPage properties of QRPrinter;
these allow us to specify which pages are to be printed
from the report.

We add an edit box to the control panel, allowing entry of
the pages to be printed, then add a button to start the print-
ing process. Another button invokes the printer-setup dialog,
allowing us to change the settings just before printing.

Rather than allowing for just a single range of pages, we want
the ability to list pages by individual value or by range, or any
{ Change the zoom on the preview }
procedure TfmQuickPreview.ZoomChange(iSize: Integer);

const
iZoom: array [1..5] of Integer = (50, 75, 100, 150, 200);

var
i: Integer;

begin
with qrpPreview do

case iSize of
1..5: Zoom := iZoom[iSize];

6: ZoomToWidth;

7: ZoomToFit;

end;

{ Update menu items and combo box }
cmbZoom.ItemIndex := iSize - 1;

for i := 0 to ComponentCount - 1 do
if Components[i] is TMenuItem then

with TMenuItem(Components[i]) do
Checked := (Tag = iSize);

end;

{ Change the zoom on the preview via the combo box }
procedure TfmQuickPreview.cmbZoomChange(Sender: TObject);

begin
ZoomChange(cmbZoom.ItemIndex + 1);

end;

{ Change the zoom on the preview via the pop-up menu }
procedure TfmQuickPreview.MenuZoomClick(Sender: TObject);

begin
ZoomChange(TMenuItem(Sender).Tag);

end;

Figure 2: Zooming a report in the previewer.

On the Cover
combination of these at once. Thus, the text entered consists of
a list of page ranges separated by commas. Each range can be a
single page number, or a range of pages in the format nn-nn.
Of course, many things could be entered that don’t fit this
structure, so the previewer must first check that the format is
correct before printing anything.

Initially, the entered text is separated at the commas, and
placed into a string list. Each entry in that list is then
processed to extract the single page number, or range of
pages separated by a hyphen. A custom exception, EPages, is
used to handle any errors encountered during this checking
(other than those related to conversion). This keeps the
code clean and straightforward. Even when we’ve extracted
valid numbers for the text, there is still the possibility that
they’re outside the range of values applicable for this report.
Again, an exception is raised if they aren’t valid.

Once all the specified pages have been checked and found to
be correct, the previewer loops through each selection and
asks the QRPrinter object to print each range in turn. See
Listing Two, beginning on page 15.
Finishing Up
We now have our custom report previewer, with all the added
functionality that we desired. A few finishing touches and it’s
ready to go.

The name of the previewed report appears in the window’s
title bar. The name is obtained from the Title property of the
QRPrinter object. Buttons for saving and reloading reports
are added to the control panel, and the standard dialog boxes
are used to ask for a filename before invoking the Save or
Load methods of the QRPrinter object. Don’t forget to add
some hints to the buttons and the edit boxes, as a reminder
of what they do.

The QRPrinter object also has properties that allow more
control over the functions available in the standard previewer.
These determine whether the print, save, and reload buttons
are enabled. It’s a simple matter to check these, and add the
same abilities to our previewer.

This form is completely generic — a prime candidate for
addition to the gallery or repository in Delphi. It could then
be easily added to another project that uses a QuickReport.

Only a few steps are required to make use of the new pre-
viewer in an application. First, add the preview form to the
project, selecting it from the gallery or repository, and add
the unit name to the uses clause in the implementation sec-
tion of the main form. Then add a new procedure to the
private section of the main form:

private
procedure PreviewReport;

This procedure creates a new previewer and shows it for the
requested report:
12 August 1997 Delphi Informant
{ Use alternate quick report preview }
procedure TfmQRExtensions.PreviewReport;

begin
with TfmQuickPreview.Create(Self) do

try
ShowModal;

finally
Free;

end;
end;

Finally, tell QuickReport to use the new previewer by assigning
this procedure to the OnPreview event of the QRPrinter object:

qrPrinter.OnPreview := PreviewReport;

Normally this is done in the OnCreate event of the main form.
That’s all there is to it!
A Database Grid
QuickReport provides components to easily report data from a
database. Simply drop a QRDBText component onto the
appropriate band, attach it to a data source, and away we go.
Unfortunately, we need to drop one onto the form for each
database field we wish to display, making sure they all have the
same color and font, and that they all line up. Then we must do
the same for the column headings, using QRLabel components.

It would be so much easier if we had something like the data-
base grid that Delphi provides for use in normal forms. Then
we could just place one of these and attach it to the data
source. It would automatically display all the fields, without
any alignment problems.

QuickReport does provide a way of implementing this sort
of functionality. Just derive a new component from
TQRCustomControl, and override a couple of methods.
The new component is called TQRDBGrid, and is
described in detail later.
Grid Properties
Obviously, we need a DataSource property to identify the
data source. We also want a Color property and a Font
property to control the basic appearance of the cells.
BorderStyle and Pen properties allow us to control the
frames around the cells, while AlignToBand and Alignment
properties shift the entire grid within its report band.
Several of these properties are already present in the
TQRCustomControl component; all we need to do is
expose them.

Each column takes its appearance from the fields of the
attached data set. The fields’ Visible property determines
whether they appear in the grid. Then their Alignment and
DisplayFormat properties (if applicable) control how they
are presented. The width of each column in the grid comes
from the DisplayWidth property of the fields.

The BorderStyle property allows us to display no frame
around the grid cells, to display only the vertical lines at the
sides of the cells, or to draw a full box around them. If any

On the Cover
sort of border is requested, the Pen property is used to
describe the appearance of that border.

The AlignToBand property determines whether the entire grid
component is shifted when reporting, relative to the band on
which it lies. When False, the grid is printed as it appears in
the design phase. When True, the Alignment property causes
the grid to be positioned appropriately within its band.

One event is defined for the grid. The OnPrint event is trig-
gered for each cell of the grid just before it’s drawn. It has the
following definition, and allows the text, color, and/or align-
ment of the cell to be altered before it’s printed:

{ User hook before printing a cell }
TPrintGridEvent = procedure(Sender: Tobject;

FieldName: string; var Value: string; var Color: TColor;

var Alignment: TAlignment) of object;

The name of the current field is passed as well, to assist in
identifying when any action should take place. One possible
use of this event would be to change the color of certain cells
in a particular column to highlight their values, such as cells
representing customers who are nearing their credit limits.
Displaying the Grid
Two methods are needed to override the display grid: Paint and
Print. The first is called whenever the grid needs to be drawn on
the screen during the design phase. The second is called by
QuickReport every time the grid is to be drawn onto the report.

If the grid is not attached to an active data set through its
DataSource property, then each of these methods calls the
default routines inherited from TQRCustomControl. This
results in the component name being shown during
design, and the text “Not connected” being displayed in
the report. Without field definitions, it’s difficult to draw
a meaningful grid!

The width of each column in the grid is derived from the
DisplayWidth property of the field, which specifies the
number of character places to use. This is multiplied by
the width of an “n” in the requested font (a standard char-
acter width) to obtain the actual column size in pixels. If
the total width of all the columns is less than the current
width of the entire component, then the component is
shrunk to fit just these columns. If the columns extend
beyond the width of the grid, then those columns are lost
and are not displayed.

Then we step through each field defined, to the data set
attached to DataSource. If the field is visible, it’s drawn
onto the screen or report. Any procedure attached to the
OnPrint event is called to allow final changes to the cell’s
text, color, or alignment. Then the cell is actually drawn,
taking into account the font, color, and alignment attribut-
es set earlier. Finally, any boxing of the cell is performed,
using the Pen from the grid. This process is fairly involved,
but interested readers may follow it in the code accompa-
nying this article (see end of article for download details).
13 August 1997 Delphi Informant
Column Headings
Okay; the grid prints the contents of the visible fields from
each database record. Now, how do we know which field is
which on the report? Obviously, we need column headings.

Rather than messing with QRLabel components, and having
problems maintaining alignment of headings and columns
when we change the report, why not adapt the grid to show
the headings as well? All the column sizing and processing
remains exactly the same, with the only change being to print
the DisplayName property of the respective fields, instead of
their values.

We also would like the heading grid to be synchronized
with the data grid; any changes to the latter should imme-
diately be reflected in the former. Then all we need to do
is ensure the horizontal alignment of the two grids, and
alter the underlying data set. This is achieved by adding a
HeaderFor property, which can be set to point to another
grid. On doing so, it links to the same data set as the
attached grid, and displays the column headings for the
defined fields with the same alignment and field widths.
The background color for the header can be set separately
from that of the data grid. The presence or absence of a
value in the HeaderFor property determines whether the
column headings or data are shown in any particular grid.

The data grid to which we are attaching must be told of the
header grid’s interest, so that whenever the former changes, it
also updates the latter, to keep both synchronized. Attaching
to other components raises the problem of what happens
when those components are deleted. Delphi comes to the res-
cue with the Notification method, which is called whenever a
component is added to or removed from the form. Having
identified the component as one attached to this grid, we can
easily remove all references to it, and avoid generating excep-
tions later on. The same applies to the DataSource property
of the grid (see Figure 3).
Changes as They Occur
The grid now knows how to draw and print itself when
requested, but so far it doesn’t know when properties of the
{ Check for loss of attached components }
procedure TQRDBGrid.Notification(AComponent: TComponent;

Operation: TOperation);

begin
inherited Notification(AComponent, Operation);

if Operation = opRemove then
begin

if lstHeaders.IndexOf(AComponent) > -1 then
begin

lstHeaders.Remove(AComponent);

lstHeaders.Pack;

end;
if (HeaderFor <> nil) and

(HeaderFor = AComponent) then
HeaderFor := nil;

if (DataSource <> nil) and
(DataSource = AComponent) then

DataSource := nil;
end;

end;

Figure 3: Acting on notification of deleted components.

On the Cover

Figure 4: This interface form allows manipulation of the under-
lying data set fields and TQRDBGrid.
attached data set and fields are being altered. If we change the
visibility of one of the fields, the appearance of the grid on
the screen doesn’t reflect this until it’s redrawn — perhaps by
minimizing, then restoring the window.

Delphi’s existing database grid responds immediately to
changes in the underlying fields. But how?

If we search the code, we find a link between the database
grid and the data source. Because it’s aware of both objects,
it can be used to pass changes of one through to the other.
These links are derived from TDataLink, and contain
methods called when the data source changes, so that the
attached components can be informed, and can update
themselves appropriately.

We automatically create and attach a data link when creat-
ing the grid. Thus, the grid knows “who” to notify when
things change. We then set the DataSource property of this
link to reflect that of the grid. In fact, we can use this
property to hold the value for the grid, and change the
reading and writing of the grid DataSource property to
automatically access that of the link. This avoids doubling
up on the property.

Because our grid is reading only from the data source, the
interaction is simple: Whenever something in the data source
changes, all we have to do is to repaint the grid to pick up
the differences. All the notification methods of the data link
that we override are similar to the following:

procedure TQRGridDataLink.DataSetChanged;

begin
FGrid.Invalidate;

end;

Now our grid is always synchronized with the latest alter-
ations to the data set.
Figure 5: The new report previewer in action.
What Does It Look Like?
The functionality of the new report previewer and the data-
base grid component are both shown in the demonstration
program accompanying this article. The program consists of
three forms: the report itself, the report previewer, and the
manipulation of the underlying data set.

The report is based on the Customer.db table that comes with
Delphi, and consists of two QRDBGrid components: one pro-
viding the column headings in the page header band; the other
showing the field contents in the detail band. Changes to the
fields defined for the data set can be made through the inter-
face form. This shows, on the left, all the fields from the table,
with selected properties for each on the right. Select a field,
and change its properties as desired. Making a field invisible
removes it from the grid when the report is generated.

Some properties of the grid can be set at the bottom of the
form: its alignment within the band, whether cell borders are
displayed, and the presence and background color of the
heading grid. (The Columns button invokes the column edi-
14 August 1997 Delphi Informant
tor, which is the subject of next month’s article.) When all is
ready, press the Preview button to show the report in the new
previewer. The demonstration form appears in Figure 4,
while the previewer is shown in Figure 5.

The detail grid has an attached OnPrint event that causes the
Company field to be colored red:

{ Colour the Company field red }
procedure TrpQRDBGridDemo.qrdbgDetailPrint(Sender: TObject;

FieldName: string; var Value: string; var Colour: TColor;

var Alignment: TAlignment);

begin
if FieldName = 'Company' then

Colour := clRed;

end;
Conclusion
Extending QuickReport in these ways adds useful functional-
ity. The new report previewer allows us to skip to any page at
the press of a key, and to print only those pages that we really
want. It also provides more zoom options. The database grid

On the Cover
component facilitates the task of generating a report by auto-
matically displaying a collection of fields from the database.
Its appearance is controlled by altering its properties and
manipulating the field definitions.

Next month we’ll extend the QuickReport database grid even
further by providing greater control over the displayed
columns, allowing each to have its own alignment, color,
font, and exact pixel width. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\AUG\DI9708KW.

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine.
Occasionally working with Delphi, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@netinfo.com.au or by phone
(Australia) at 6-291-8070.
Begin Listing One — Navigating Pages
{ Set label for current page and dis/enable page movement

buttons/menu items }
procedure TfmQuickPreview.CheckPages;

begin
edPageNumber.Text := IntToStr(qrpPreview.PageNumber);

lblPages.Caption := 'of ' +

IntToStr(qrPrinter.PageCount);

btnFirstPage.Enabled := (qrpPreview.PageNumber > 1);

btnPrevPage.Enabled := (qrpPreview.PageNumber > 1);

btnNextPage.Enabled := (qrpPreview.PageNumber <

qrPrinter.PageCount);

btnLastPage.Enabled := (qrpPreview.PageNumber <

qrPrinter.PageCount);

miFirstPage.Enabled := (qrpPreview.PageNumber > 1);

miPrevPage.Enabled := (qrpPreview.PageNumber > 1);

miNextPage.Enabled := (qrpPreview.PageNumber <

qrPrinter.PageCount);

miLastPage.Enabled := (qrpPreview.PageNumber <

qrPrinter.PageCount);

end;

{ Change the page number being viewed }
procedure TfmQuickPreview.edPageNumberExit(Sender: TObject);
var

iPage: Integer;

begin
try

iPage := StrToInt(edPageNumber.Text);

if (iPage < 1) or (iPage > qrPrinter.PageCount) then
Abort;

qrpPreview.PageNumber := iPage;

finally
CheckPages;

end;
end;

{ Change pages on ENTER }
procedure TfmQuickPreview.edPageNumberKeyDown(Sender:

TObject; var Key: Word; Shift: TShiftState);

begin
if Key = VK_RETURN then

edPageNumberExit(edPageNumber);

end;

{ Move to first page }
15 August 1997 Delphi Informant
procedure TfmQuickPreview.btnFirstPageClick(Sender: TObject);
begin

qrpPreview.PageNumber := 1;

CheckPages;

end;

{ Move to previous page }
procedure TfmQuickPreview.btnPrevPageClick(Sender: TObject);
begin

qrpPreview.PageNumber := qrpPreview.PageNumber - 1;

CheckPages;

end;

{ Move to next page }
procedure TfmQuickPreview.btnNextPageClick(Sender: TObject);

begin
qrpPreview.PageNumber := qrpPreview.PageNumber + 1;

CheckPages;

end;

{ Move to last page }
procedure TfmQuickPreview.btnLastPageClick(Sender: TObject);

begin
qrpPreview.PageNumber := qrPrinter.PageCount;

CheckPages;

end;

End Listing One
Begin Listing Two — Printing Selected Pages
{ Print the specified pages, comma-separated list,

single pages or range nn-nn }
procedure TfmQuickPreview.btnPrintClick(Sender: TObject);

var
iStartPage, iEndPage, i: Integer;

sPages: string;
slPages: TStringList;

{ Extract values in format nn-nn }
function ExtractRange(sText: string; var iStart,

iEnd: Integer): Boolean;

var
i: Integer;

begin
Result := False;

i := Pos('-', sText);

try
if i = 0 then { Single value }

begin
iStart := StrToInt(sText);

iEnd := iStart;

end
else { Range of values }

begin
iStart := StrToInt(Copy(sText,1,i - 1));

iEnd := StrToInt(Copy(sText,i + 1,Length(sText)));

end;
if (iStart < 1) or (iStart > qrPrinter.PageCount) or

(iEnd < 1) or (iEnd > qrPrinter.PageCount) then
raise EPages.Create(

'Page number(s) outside range of 1 to ' +

IntToStr(qrPrinter.PageCount));

if (iEnd < iStart) then
raise EPages.Create(

'Ending page is before starting page.');

Result := True;

except
on e: EPages do

begin
MessageDlg(e.Message, mtWarning, [mbOK], 0);

Exit;

end;
on e: Exception do

begin
MessageDlg('Page numbers to print should be in ' +

On the Cover
'the form nn-nn.' + #13#10 +

e.Message, mtWarning, [mbOK], 0);

Exit;

end;
end;

end;

begin
{ Extract values separated by commas }
slPages := TStringList.Create;

try
sPages := edPages.Text;

i := Pos(',', sPages);

while i > 0 do begin
slPages.Add(Copy(sPages, 1, i - 1));

Delete(sPages, 1, i);

i := Pos(',', sPages);

end;
slPages.Add(sPages);

{ Check all values for format }
for i := 0 to slPages.Count - 1 do

if not ExtractRange(slPages[i],

iStartPage, iEndPage) then
Abort;

{ If all OK, then print each set }
for i := 0 to slPages.Count - 1 do begin

ExtractRange(slPages[i], iStartPage, iEndPage);

with qrPrinter do begin
FromPage := iStartPage;

ToPage := iEndPage;

Print;

end;
end;

finally
slPages.Free;

end;
end;

End Listing Two
16 August 1997 Delphi Informant

17 August 1997 Delphi Informant

Informant Spotlight
Delphi / Object Pascal

By Peter Roth

Nice and Nicer
How Nice Are Your Object Pascal Classes?
For many developers new to the Object Pascal language, questions tend to
arise after they jump in and get their feet wet. Some of these queries

include: What services must classes provide so they are reusable, as in “easily
derived from?”; what services must classes provide so they are reusable as
fields of another class?; and how can I tell that I have “good” code?
These questions are not new, and experienced
programmers have an idea of what a class
must have. In C++, for example, certain meth-
ods are so important to the proper operation
of a program that they are required.

If the programmer omits these crucial meth-
ods, the C++ compiler generates a default to
fulfill the need. Because compilers cannot
read the human mind, the generated methods
may be less than what is needed.

On the other hand, a class in which the
required methods are properly provided is
called a “nice” class (coined as such by
Martin Carroll and Margaret Ellis in
Designing & Coding Reusable C++ [Addison-
Wesley, 1995]).

Object Pascal doesn’t require specific meth-
ods, but some methods are so important to
the proper operation of Object Pascal pro-
grams that they ought to be part of most
classes. Therefore, to be “nice,” an Object
Pascal class must contain:

the Create constructor, to make objects
(instances of a class);
the Destroy destructor, to destroy
objects;
the Equals function, to compare
objects;
the Copy procedure, to copy one object
into an existing object; and
the Clone constructor, to make duplicates
of objects.
The last three of these can be a little tricky to
get right, but after some analysis, they are
mostly boilerplate.

The nice class is a good start, and is fine
for objects that live in memory. For engi-
neering calculations specifically, many
objects persist; i.e. they are preserved in
files. Thus, a class may need to interact
with text files and streams to save and
restore data from those sources.

A nice class is made “nicer” by providing
the following four methods:

the Read constructor, to read text;
the Write procedure, to write text;
the Get constructor, to read from a
stream; and
the Put procedure, to write to a stream.

Each of these methods is simple to write.
Before getting to the details, however, let’s
consider how classes are used and, unfortu-
nately, misused.
How Are Classes Used?
Let’s consider two ways classes are used: as
bases from which to derive other classes, and
as components of aggregated classes.

When a class is derived from a base class,
the derived class is said to be in an is a rela-
tionship with the base class. That is, a
derivative instance may replace a base
instance in a calculation because the

Informant Spotlight
derived class is a base class. This relationship is the source
of polymorphism.

For example; suppose the job requires class D be derived
from base class B. For D to write itself to a file, the inherit-
ed part of B must also write itself to a file. Therefore, both
D and B will have a Write procedure, and D.Write will refer-
ence B.Write. If B is a “nicer” class, it can already write
itself, so half the job of writing D.Write is done and requires
no extra effort.

On the other hand, when an object O contains another
object D, then O has a D. This aggregation of objects is
therefore called the has a relationship. A Delphi form is an
obvious example of an aggregated object. A form has a
TButton, it has a TCheckbox, etc.

If the aggregated object O is to write itself to a file, O’s fields
must also be written to the file. Somewhere in the O.Write
method will be a call to the contained D.Write. If D is a
“nicer” class, this capability is provided to the O developer,
and the writing of O.Write can be accomplished by simply
calling D’s method. Again, a small extra effort is required.
How Are Classes Misused?
Consider the statements:

var
a, b: TSomeClass;

begin
a := TSomeClass.Create;

b := TSomeClass.Create;

if a = b then
writeln('true')

else
writeln('False, as expected');

The intrepid programmer is trying to compare two objects
for equality, but the expression:

a = b

will always be False, regardless of the contents of a and b. To
see why, recall that a and b are references, a kind of pointer.
Because a pointer is an address, and because the expression
compares different addresses:

a = b

will always evaluate to False. This implies that comparisons
must be done with something other than the = operator, and
justifies the Equals function as a method in the nicer class.

Consider a statement that attempts to copy b into a using the
assignment operator:

a := b;

This may not be what is intended: a is not a copy of b, but
rather an alias. a and b are still references, so addresses are
copied by the assignment operator, not contents. When refer-
ences or pointers are copied, the action is known as a shallow
18 August 1997 Delphi Informant
copy. When the contents of an object are copied, the action is
called a deep copy.

To do a deep copy, the programmers using a class must access
the fields of that class and do the copy in their own code,
outside the class. Alternatively, the designer of the class can
provide a Copy procedure and keep this activity where it
belongs — in the class.

Finally, although the intent of the statement:

a := b

is assumed to be “make a into a copy of b,” it could also be
assumed to be a naive attempt to clone b; that is, to create
a as a completely new object. Of course, creating a new
object requires a constructor. Therefore, to enable cloning,
the class designer must provide a Clone constructor as part
of the class interface. The programmer can then write:

a := TA.Clone(b);

Now, let’s examine the details of the members of a “nice” class.
The Create Constructor
A constructor performs three tasks when creating an object:

it allocates storage;
it initializes the fields of the object; and
it returns a reference to the created object.

The Object Pascal Language Guide [Borland International,
1996] suggests that the constructor may be omitted, and
the compiler will nevertheless produce code to instantiate
the class, in which case the fields are initialized to 0.

The solution to problems with object-oriented program-
ming languages is one of designing a set of cooperating
classes. During the design process, the designer changes the
class hierarchy; inheritance patterns are altered; common
fields and methods migrate toward the base classes; new
classes evolve, older ones are discarded, etc.

In this volatile environment, it’s handy to have a constructor
to initialize fields. Hence, the “nice” class requires:

one or more constructors;
each constructor to invoke its inherited Create, or another
appropriate inherited constructor, such that all inherited
constructors are invoked in turn; and
the default constructor to be named Create, which is
declared thus:

constructor Create [(argument list)];

and defined thus:

constructor TMyClass.Create [(argument list)];
begin
inherited Create [(appropriate arguments)];
// User code to instantiate this object's fields.

end;

Informant Spotlight
The Destroy Destructor
A destructor should first execute the user code that releases
“owned” objects, and finish with a call to the inherited
destructor. When this user code completes, the destructor
releases storage that was allocated for the object. Note that
the word “storage” here refers to memory; storage associat-
ed with files and other devices must be released with the
user code.

The Object Pascal Language Guide’s recommendations regard-
ing destructors (albeit enforced by self discipline) are that they
produce a nice class destructor:

There shall be only one destructor.
It shall be called Destroy.
It shall be declared thus (overriding its parent method,
polymorphically):

destructor Destroy; override;

and defined thus:

destructor TMyClass.Destroy;

begin
// User code to dispose of all of this object's fields,
// a mirror image of the constructor user code
inherited Destroy;

end;

When disposing of an object, don’t write:

TMyClass.Destroy;

instead, write:

TMyClass.Free;

(In other words, “Don’t call us, we’ll call you.”)
function T2.Equals(const aT2:T2): Boolean;

begin
Result := true;

// Safe casts
Result := Result and T1(Self).Equals(T1(aT2));

// for each field in T2
// if the field is a built-in type
// Result := Result and (thefield = aT2.thefield)
// if the field is another nice class
// Result := Result and (theNiceField.Equals(
// aT2.theNiceField))

end;

Figure 1: The definition of Equals has the same form as the
Equals in T1, and contains an additional statement.
The Equals Function
How will it be used? Assuming class T1 and the variables:

var a, b: T1;

then the expression to compare the equality of a and b will be:

a.Equals(b)

From this expression, the code follows directly. The declaration is:

function Equals(const aT1:T1): Boolean;

and the definition is:

function T1.Equals(const aT1:T1): Boolean;

begin
Result := true;

// for each field in T1
// if the field is a built-in type
// Result := Result and (thefield = aT1.thefield)
// if the field is another nice class
// Result := Result and (theNiceField.Equals(
// aT1.theNiceField))

end;
19 August 1997 Delphi Informant
Should Equals be virtual? Arguments of all descendants of
virtual functions must have the same arguments. That is, the
arguments must be the same type as the base class. Given the
class T1:

function Equals(const aT1: T1); Boolean; virtual;

then class T2 derived from T1 must declare the Equals function:

function Equals(const aT1: T1); Boolean; override;

and define it:

function T2.Equals(const aT1: T1); Boolean;

begin
Result := true;

// for each field in T2
// if the field is a built-in type
// // This is an unsafe cast.
// Result := Result and (thefield =

T2(aT1).thefield)
// etc.

end;

Not only does this function look wrong, the internals require
an unsafe type cast. The cast is unsafe because it allows the
argument aT1 to access fields of a descendent which may not
exist in the class T1, especially if the function is called like this:

var
aT2: T2;

aT1: T1;

...

if aT2.Equals(aT1) then
... // Probably trouble.

Therefore, Equals shall not be virtual.

What does Equals look like in a derived nice class? The defini-
tion of Equals will have the same form as the Equals in T1, and
will contain an additional statement, as shown in Figure 1. The
casts are safe because a derived object may always be cast to its
base object. It’s possible to write this statement with a single cast:

Result := Result and T1(Self).Equals(aT2);

because T2 is a T1, and so is acceptable to the base Equals
function. However, the form that casts both objects is prefer-
able, because it maintains the symmetry of the statement.

Informant Spotlight
Should Equals have to compare apples and oranges? No.
Object Pascal stipulates that different types can never be
equal; they are different. That’s the whole idea behind type
safety. The Equals function must compare two entities,
each of which share the same essence. Therefore, if a is a
TApple (derived from TFruit), and o is also a derivative of
TFruit, then the code to compare a with o must be:

if ClassType(o) = ClassType(a) then
Result := a.Equals(o)

else
Result := False;

which preserves type safety. On the other hand, an expres-
sion like:

f.Weight = a.Weight

compares the size of two pieces of fruit, but in no way
implies that the fruits are equal.

Should the argument be passed as a variable, by value, or as
a constant? That is, pick one of these statements:

function Equals(var aT1: T1): Boolean; // As a variable.
function Equals(aT1: T1): Boolean; // By value.
function Equals(const aT1: T1): Boolean; // As a constant.

Again, note that in each case, aT1 is a reference (a pointer) to
an object.

In the first function, the code:

var aT1

tells the compiler (and the reader) that the reference to aT1
may be changed by this call. That is, aT1 will most likely
point to a different object after execution of the function.
That the simple comparison of two objects could result in
getting a different object back is absolutely mind boggling,
regardless of what the function is doing. Therefore, reject
passing the argument as a variable.

The second function accepts an argument passed by value; it
directs the compiler to make a copy of the reference and pass the
copy to the function, whose scope becomes that of the function.
The function is free to do whatever it wishes with the copy.
Again, the human reader wonders how a comparison could
require a function to modify even a copy of one of the objects.

In the third function, the phrase:

const aT1

tells the compiler and the reader that the reference to aT1
will not and cannot be changed by calling the function.
Although this guarantee is similar to passing by value, the
notational advantage is significant: The code says what it is
supposed to do. Of secondary interest, passing as a const
may be more efficient than either of the other methods.
Therefore, passing as a const is appropriate.
20 August 1997 Delphi Informant
Any of these ways to pass arguments will work, but none
prevents the called function from changing the contents of
the reference. The advantage to choosing const is purely
notational. On the other hand, the class developer must
ensure that the code in the method preserves the “const-
ness” of the argument.
The Clone Constructor and Copy Procedure
Because of the similarity in their intent, these two meth-
ods are discussed together. What should they be, functions
or constructors?

The idea of cloning implies the creation of a new object,
whereas the idea of copying implies placing the values of one
object into the values of another, existing object. Hence,
Clone should be a constructor, and Copy should be a function
or procedure. Because there is no expected “return signal”
from the execution of Copy, it should be a procedure.

Using reasoning similar to that of the Equals function, the
Clone constructor and Copy procedure declarations for a class
T1 are easily seen to be:

constructor Clone(const aT1: T1);

procedure Copy(const aT1: T1);

The definitions of the Clone constructor and Copy proce-
dure are shown in Figure 2. Note that neither method
requires type casts.
The Nicer Class
It’s time to consider making the nice class even nicer. None of
the nice class method names have interfered with the mean-
ing and intent of Object Pascal’s reserved words, directives,
etc. The nicer class begins to impinge on these areas.

Interfacing with TextFiles. Two methods are proposed: Read
and Write. Although they each interface with a TextFile, they
constructor T1.Clone(const aT1: T1);

begin
// if this class is derived from T0
// inherited Clone(aT1)
// else
// inherited Create;
// for each field in T1
// if the field is a built-in type
// thefield := aT1.thefield;
// if the field is another nice class
// theNiceField := T1.Clone (aT1.theNiceField))

end;

procedure T1.Copy(const aT1: T1);

begin
// if this class is derived from T0
// inherited Copy (aT1)
// for each field in T1
// if the field is a built-in type
// thefield := aT1.thefield;
// if the field is another nice class
// theNiceField.Copy (aT1.theNiceField)

end;

Figure 2: The definitions of the Clone constructor and Copy
procedure.

Informant SpotlightInformant Spotlight

constructor T1.Get(S: TStream);

begin
// if this class is derived from T0
// inherited Get(aT1)
// else
// inherited Create;
// for each field in T1
// if the field is a built-in type
// S.Read(thefield, sizeof(thefield));
// if the field is another nice class
// theNiceField.Get(S);

end;

procedure T1.Put(S: TStream);

begin
// if this class is derived from T0
// inherited Put (aT1)
// for each field in T1
// if the field is a built-in type
// S.Write (thefield, sizeof(thefield));
// if the field is another nice class
// theNiceField.Put(S);

end;

Figure 3: The Get and Put definitions.
need not be complementary. That is, Read need not be able
to interpret a file produced by Write.

Read and Write have traditionally been associated with file
data (for further discussion, see Pascal User Manual and
Report, 2nd Edition, by Kathleen Jensen and Niklaus Wirth
[Springer-Verlag, 1978]). The nicer class maintains this idea,
as opposed to the methods used to obtain or set class proper-
ties, and the myriad other uses to which the words “Read”
and “Write” have been applied.

Read. Although Read could be a procedure, the interface
with a TextFile allows the size of an object to be read, as well
as the object’s contents. Because these two actions match the
actions of a constructor, Read is defined as a constructor. The
argument may be a TextFile, a lexical scanner, etc.

Here’s an example of the simplest Read declaration:

constructor Read(var f: TextFile);

Write is a procedure that writes an object in human-readable
form. This versatile method can be extremely useful as an
error logger during program development. It can also be used
to preserve numerical results, etc.

This is an example of the simplest Write declaration:

procedure Write(var f: TextFile);

The actions these two methods can implement are so diverse
that a typical example is not obvious.

Interfacing with TStreams. Two methods are proposed: Get
and Put. These methods must be complementary. That is,
Get must be able to interpret a TStream produced by Put,
and Put must produce a TStream legible to Get. The comple-
mentarity is easily maintained because the code for each
method is in proximity to the other, and may be easily “eye-
balled” for correctness.

Get and Put. Get and Put were used in the original Pascal lan-
guage to fetch a single char from input, and write a single char
to output, respectively (again, see Pascal User Manual and
Report, 2nd Edition). They were redefined and used as stream
functions in Borland Pascal 7, but have disappeared from
Delphi 2. Their use in nice classes to read and write to streams
therefore does not conflict with current usage.

Get. For the same reasons that Read is a constructor, so is
Get. The declaration is:

constructor Get(S: TStream);

Put. Paralleling Write, Put is a procedure, and is declared:

procedure Put(S: TStream);

The state of S will change after a call to Get or Put, so S is
passed by value (rather than as a const) to so indicate. Again,
21 August 1997 Delphi Informant
this is a notational decision. The Get and Put definitions are
shown in Figure 3. Note that neither method requires casts.
The Payoff
Nicer classes simplify development because each object is
guaranteed to have desirable qualities. As an example,
assume the following nicer toy classes:

TAnother contains a string field.
TAnotherKid, a child of TAnother, contains a double field.
TBase contains a char field.
TDerived (derived from TBase) has a string field and a
TAnotherKid.

The code in Listing Three shows how easily objects of the
classes are created and compared. The classes’ methods
make these and other object interactions easy to write. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\AUG\DI9708PR.

Peter N. Roth is president of Engineering Objects International (http://www.incon-
research.com/eoi) in Fairfax, VA. He teaches and writes software in several lan-
guages, but prefers Delphi and C++. The company’s latest release is
ClassBuilder 4 for Delphi 2. Peter can be contacted via e-mail at
peteroth@erols.com, or phone at (703) 968-4224.
Begin Listing Three — UTAnoKid.pas
{$X+ extended syntax}
unit Utanokid;

interface

uses
Classes,

UTAnothe;

type

Informant Spotlight
TAnotherKid = class(TAnother)
constructor Create(const aString: string;

const aDouble: double);

constructor Clone(const aTAnotherKid: TAnotherKid);

constructor Get(S: TStream);

constructor Read(var f: TextFile);

destructor Destroy; override;

procedure Copy(const aTAnotherKid: TAnotherKid);

function Equals(

const aTAnotherKid: TAnotherKid): Boolean;

procedure Put(S: TStream);

procedure Write(var f: TextFile);

function GetD: double;

function SetD(const aDouble: double): double;

private
d: double;

end; {TAnotherKid}

implementation

uses
SysUtils;

constructor TAnotherKid.Create(const aString: string;
const aDouble: double);

begin
inherited Create(aString);

d := aDouble;

end; {Create}

constructor TAnotherKid.Clone(

const aTAnotherKid: TAnotherKid);

begin
inherited Clone(aTAnotherKid);

d := aTAnotherKid.d;

end; {Clone}

constructor TAnotherKid.Get(S: TStream);

begin
inherited Get(S);

S.Read(d,sizeof(d));

end; {Get}

constructor TAnotherKid.Read(var f: TextFile);

begin
// To be added.

end; {Read}

destructor TAnotherKid.Destroy; {override}
begin

inherited Destroy;

end; {Destroy}

procedure TAnotherKid.Copy(const aTAnotherKid: TAnotherKid);

begin
if Self = aTAnotherKid then

Exit; {Don't clobber Self.}
inherited Copy(aTAnotherKid);

d := aTAnotherKid.d;

end; {Copy}

function TAnotherKid.Equals(

const aTAnotherKid: TAnotherKid): Boolean;

begin
Result := True;

if Self = aTAnotherKid then
Exit; {Saves time?}

Result := Result and
TAnother(Self).Equals(TAnother(aTAnotherKid));

Result := Result and (d = aTAnotherKid.d);
22 August 1997 Delphi Informant
end; {Equals}

procedure TAnotherKid.Put(S: TStream);

begin
inherited Put(S);

S.Write(d,sizeof(d));

end; {Put}

procedure TAnotherKid.Write(var f: TextFile);

begin
end; {Write}

function TAnotherKid.GetD: double;

begin
Result := d;

end; {GetD}

function TAnotherKid.SetD(const aDouble: double): double;

begin
Result := d;

d := aDouble;

end; {SetD}

end.

End Listing Three

23 August 1997 Delphi Informant

Hop on POP
Internet Delphi: Part II

On the Net
Delphi 2 / POP3 / SMTP

By Gregory Lee

Figure 1: InterNIC’
Last month, we saw how easy it is to add the ability to send e-mail over the
Internet with the Simple Mail Transfer Protocol (SMTP). This time, we’ll focus

on the protocol that lets you retrieve e-mail from an e-mail account: the Post
Office Protocol (POP). The current version of this protocol is version 3, so it’s
generally referred to as POP3.
If you didn’t read the last installment on
SMTP, you have some catching up to do.
One of the topics that we won’t review here
in detail is a programming method known as
a state machine. Suffice it to say the technique
isn’t very complicated, but it’s an ideal way to
implement support for many Internet proto-
cols. See the first installment for details.
Why?
If there’s already a protocol for sending e-
mail, why in the world do we need another
protocol for retrieving it? Shouldn’t we sim-
ply assume the mail server’s role in an SMTP
conversation? That sounds reasonable, but
remember that the SMTP protocol essentially
requires that the server be available at port 25
s ftp site contains an index to all RFC documents.
at all times; if your personal SMTP server
program wasn’t available at the exact moment
when someone wanted to send you a mes-
sage, you just wouldn’t get it.

Instead, when someone sends you e-mail, it
goes from the SMTP server where they
dropped it off, into your service provider’s
post office. In all probability, it was passed
around by a handful of systems along the
way before it got to your local post office,
but that’s not really important right now.
What’s important is the result: When you
log into your personal Internet account,
you can check your service provider’s post
office to see if any messages are waiting.
That makes a lot more sense than requiring
everyone, everywhere, to establish a contin-
uous Internet connection and an SMTP
mail server.
A Program Named DelphiEmail
If you want a complete description of the
POP3 protocol, you should read RFC 1725,
“Post Office Protocol - Version 3” by John
G. Meyers and Marshall T. Rose. RFC stands
for “Request For Comment” and virtually
every Internet standard is documented some-
where in an RFC file (see Figure 1). Here are
some Web sites containing indexes you can
search for this, and other, RFC documents:

http://www.neda.com
http://ds.internic.net/ds/rfc-index.html
http://www.rasip.etf.hr/rfc/

Figure 2: A typical DelphiEmail session.

On the Net
Getting Started
In a typical DelphiEmail session, the user will start the pro-
gram and click the Check Mail button. This is our cue to con-
tact the mail server and initiate a POP3 session. A typical ses-
sion is shown in Figure 2.

Before we can connect to the POP3 server, we must know
where to find it. Part of the server’s location can be taken
directly from your e-mail address. In a typical e-mail address,
everything on the right side of the @ sign is referred to as the
host name. For example, in 76455.3236@compuserve.com,
the host name is compuserve.com.

The host name gets us most of the way there, but we still need
to know where on the host system we can find the POP3 mail
server. RFC 1725 tells us that the mail server will be listening
for calls at port number 110. You can think of Internet port
numbers as the extension numbers in a telephone system.
Most established protocols have a “well-known” port number
where clients and servers can count on hooking up. The “well-
known port” for POP3 just happens to be port 110.

With the host name and port number now in place, we’re ready
to establish the connection. If you want an explanation of how
we’re calling routines in WINSOCK.DLL, how the host name
gets translated into an IP address, and all that other fun stuff,
you can pore through the Windows Socket Specification, or get
a copy of the Delphi Finger article that got us started (see the
August 1996 issue of Delphi Informant). For now, the details of
the journey are less important than the destination.
Another State Machine
According to RFC 1725, when we connect to the POP3 serv-
er, the server will send us a greeting. If we’ve requested the
data before the greeting arrives (with the recv function), the
greeting will trigger an FD_READ message and a call to our
AsyncEvent handler.

Like the SMTP greeting, the POP3 greeting message
could say almost anything, but according to the POP3
24 August 1997 Delphi Informant
protocol, we can count on one constant element: The
first three characters in the greeting message will be +OK.
Unlike the SMTP server responses, the POP3 server
doesn’t use result codes to indicate the success or failure
of various operations. In fact, the initial response to
every command we can send will be either +OK or -ERR
depending on the result — all the more reason to use a
state machine to handle the conversation.

A simple state machine can be implemented with one
global variable (the current state), and a case statement
that executes some code or branches to whatever proce-
dure is appropriate given the state. At each stage in the
protocol, our program will proceed by sending something
new to the server, then waiting for an appropriate
response. When the response or acknowledgment message
is received, the state machine is bumped to the next level,
and processing continues.

In this version of the DelphiEmail program, the state
machine is a little more complex than the SMTP version.
The reason for this is simple: You can do a lot more with
POP3 than you can with SMTP. A POP3 conversation
doesn’t necessarily proceed along a fixed path the way an
SMTP session does. You can use POP3 commands to get
statistics about your e-mail, retrieve waiting e-mail, and
delete your e-mail. Any and all of these steps are optional.

One result of this added flexibility is an increase in the num-
ber of potential values for the global variable State. The new
definition for the TState variable type is:

TState = (Inactive, Connected, UsernameSent, PasswordSent,

WaitingForStats, WaitingToRetrieveMail,

RetrievingMail, DeletingMessage, QuitSent,

UnChanged);

With the new type established in this way, the layout of the
case statement is straightforward. Finishing the application is
now simply a matter of initiating these states in a particular
sequence, and writing a short procedure to handle each state.
Will Our Mystery Guest Please Sign In?
Initially, our State is Inactive. Once we’ve connected to the
POP3 server, our State changes to Connected. The Pop3Engine
procedure handles this state by scanning incoming messages
for the +OK we’re expecting.

If we get the response we’re looking for, we can proceed to the
next step, which is to send the server the USER command along
with the appropriate username. In a typical Internet e-mail
address, the username is everything to the left of the @ sign. For
example, in 76455.3236@compuserve.com, the username is
76455.3236.

The next time we receive a message from the server, it will
filter through the state machine and control will be
handed off to the section of code associated with the
UsernameSent state. This code looks for another +OK.
Again, the POP3 protocol doesn’t dictate exactly what the

On the Net
server will send us, but it does require that the first few
characters be +OK if we’re on track, or -ERR if something’s
wrong. Once we receive the +OK sequence, we can proceed
to the next step.

One of the basic requirements of any e-mail system is that
you, and you alone, have access to your e-mail. Obviously,
the most straightforward method of protecting an e-mail
account is to use a password, and that’s what POP3 requires.
The format of the line we send to the server is the word
PASS, followed by the password that goes with the username
we previously supplied with the USER command. After the
password line is sent, we set the global State variable to
PasswordSent, so the state machine will know how to proceed
when it receives a response.

The code associated with the PasswordSent state looks for
the appropriate response which, in this case, is another
+OK. If the server responds with a -ERR instead, we have
something mixed up. The password sent doesn’t match the
username, and we won’t be able to access the account.

Let’s assume we have the correct username and password, and
that the server has responded with another +OK. At this point,
there is no hard-and-fast rule about what we should do. A
reasonable course of action, however, would probably be to
get the status of any waiting messages. The POP3 command
to accomplish this is STAT.

Unlike many of the other commands, the server’s response to
STAT must follow a consistent format. After the usual +OK,
the response will contain two numbers: the number of wait-
ing messages, and their total size in bytes. For example, if five
messages are waiting, and their combined size is 496 bytes,
the server’s response would be:

+OK 5 496
Ask and You Shall Receive
Now that we’re connected to the mail server, we’re logged into
an e-mail account, and we know how many messages are waiting
in the account, we can start retrieving the messages. The POP3
command to get this process started is the word RETR, followed
by the number of the message to retrieve. As long as you indicate
a valid message number, the server will respond with another
+OK, followed by the text of the message requested.

Just like the e-mail we sent with the previous SMTP pro-
gram, the message will be sent to us in a continuous stream.
The only filtering we have to do is to check for a period in
the first position of each line. If the first character of a line is
a period, we check the second character to determine if this
line of the message starts with a period, or if this is a signal
that the text of the message is complete.

If the first two characters of a line are periods, this indicates that
the message actually contains a line of text that begins with a
period. The addition of the leading period is a process called
“quoting,” and it’s up to the receiving program to check for and
25 August 1997 Delphi Informant
strip out the additional characters. A line containing a single
period indicates the end of the message.

Each time WinSock generates an FD_READ message, we’ll have
another portion of the e-mail waiting in the buffer. Of course,
that doesn’t mean we’ll necessarily get a separate FD_READ read
for each line in the e-mail. In fact, it’s likely we’ll receive several
lines at once. The POP3 server and WinSock are going to coop-
erate to put as much information into the buffer as they can.
Because of this, you will often see the leading portion of one line
at the end of the buffer, and the remainder at the beginning of
the next load. The solution is to set up an intermediary line
buffer, so that any partial lines we receive can be deposited there
Your Mileage May Vary
In last month’s article, and again in this installment, we’ve
used the host name parts of e-mail addresses to decide where
to contact the mail server. Wouldn’t it be nice if everything
in life were that simple? Well, everything is not, even e-mail
distribution.

Many, if not most, large systems have their SMTP and
POP3 servers stationed at a site other than that given in
their individual users’ e-mail addresses. For example, if you
try to contact the SMTP server for worldnet.att.net, you will
probably find there isn’t even an IP address listed for that
host name (Valid name, no record of requested type). In
fact, both the SMTP and POP3 servers for users on that
system are located at postoffice.worldnet.att.net. So how in
the heck does the e-mail you send to a user on that system
get where it’s going?

Typically, you would drop the e-mail off at the SMTP
server on your ISP’s system. Again, that server may or may
not be located at the host name given in your e-mail
address; but even if it’s not, at least you only have to keep
track of one additional host name instead of every mail-
server host name corresponding to every e-mail address
you want to send mail to. From there, the mail server on
your ISP’s system will attempt to find the appropriate mail
exchange site for the destination address. It finds this by
contacting one or more name servers until it locates the
one that knows about worldnet.att.net. Once it’s found
the appropriate name server, it can inquire about mail
exchange site(s) corresponding to users at worldnet.att.net.
It will eventually determine that it can hand off the e-mail
to an SMTP server at postoffice.worldnet.att.net (which
does have a listed IP address). From there, it’s up to the
mail server on the other end to make sure the message gets
to its final destination.

If you find this at all confusing, you’re not alone. In fact,
entire books have been written on how to set up and admin-
ister Internet e-mail systems. We’re not talking about a
breezy couple of hundred pages either. The book sendmail by
Bob Costales and Eric Allman [O’Reilly & Associates, Inc.,
1996] runs over 1,000 pages. At least one book has been
written about the name-server system alone. DNS and BIND
by Paul Albitz and Cricket Liu [O’Reilly & Associates, Inc.,
1992] covers this area in some detail. If you want to know
more about how Internet e-mail is distributed and delivered,
these are both required reading.

— Gregory Lee

Your Mileage May Vary

On the Net
until the remaining portion of the line comes through. In the
ReceiveMail function, the global variable szWork plays that role.
You’ve Got It, Now Get Rid of It
After you’ve successfully retrieved a message from the post office,
it’s generally a good idea to save the message locally, and delete the
message from your e-mail account. That way, you won’t waste
time retrieving the same messages again the next time you log into
the account. Your service provider will probably also appreciate it,
because the post office won’t have to continue storing your old
messages.

The POP3 command to delete an e-mail message is DELE,
followed by the message number to delete. Again, it’s up to you
to make sure you’ve provided the correct message number. If
you wanted, you could delete all the messages in your account
without retrieving them. The mail server won’t second-guess
your commands.

You probably won’t be using this sample project to retrieve your
e-mail on a daily basis. Even if you did, there’s no way (yet) to save
your messages to disk, recall them, and so forth. For this reason,
I’ve purposely omitted the DELE command from the sample
program. So don’t worry, the urgent message your boss just sent
you won’t get lost in the shuffle (and I won’t be flamed by a bunch
of angry, recently unemployed Delphi programmers). Besides, it’s
nice to be able to run the sample program over and over without
having to send yourself another e-mail before each session.
Conclusion
Once you’ve finished counting, retrieving, and deleting messages
from your e-mail account, you can say good-bye to the mail server
with the QUIT command. The server will respond with +OK, and
close its end of the connection.

At this point, turning the DelphiEmail program into a func-
tional e-mail client is simply a matter of combining the SMTP
capabilities illustrated in the previous article with the POP3
code just discussed. Of course, a full-featured e-mail program
would also allow you to do things like save, recall, reply to, and
forward e-mails you’ve received. It might also allow you to
attach binary files to your e-mail, and detach them again upon
receipt. Next time, we’ll add some of these features, and look at
a data-encoding method that makes binary file attachments
possible: base64 encoding. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\AUG\DI9708GL.

Gregory Lee is a programmer with over 15 years of experience writing applications
and development tools. He is currently the president of Software Avenue, Inc.,
which has just released a C++Builder Edition of their Delphi development tool,
Internet Developer’s Kit. Greg can be reached by e-mail at 76455.3236@com-
puserve.com.
26 August 1997 Delphi Informant

27 August 1997 Delphi Informant

The Paradox Files: Part V
Passwords, Encryption, and Table Language

Columns & Rows
Paradox Files / Database Desktop / BDE / Delphi

By Dan Ehrmann

Figu

Figure 2:
We have covered a lot of ground in our exploration of the Paradox file for-
mat. The first two articles in this series (beginning in the April 1997 issue

of Delphi Informant) explored the internals of Paradox .DB files, dissecting the
structure of a table, how the BDE manages records and blocks, field types, and
calculating record size; the third article examined primary and secondary
indices; and the fourth article addressed validity checks and referential integrity.
In this, the fifth article, we’ll discuss password protection and the Paradox
encryption mechanisms. We’ll also introduce Paradox Table Language options.
re 1: Defining a master password for a table.

Defining auxiliary passwords for a table.
Encrypted Tables
The Paradox file format supports encrypted
tables that can only be accessed by providing
a password. Paradox tables support multiple
levels of passwords, with different rights to
perform operations on a table.

You encrypt a table by defining a master pass-
word for it. In the Database Desktop, this is
accessed by selecting Table | Restructure Table

(with a table open on the desktop). Under
the Table Properties drop-down list select
Password Security. Click on the Define button
to access the dialog box shown in Figure 1.

Passwords can be up to 128 characters, but
only the first 31 characters are significant.
Also, passwords are case-sensitive. The
master password defines the owner of a
table; it has all rights, including the ability
to change the master and auxiliary pass-
words. However, it is also possible to
define an auxiliary password that has the
right to modify the table’s structure.
Auxiliary Passwords
After you enter and verify the master pass-
word, the Auxiliary Passwords button becomes
available. Click this button to see the dialog
box shown in Figure 2, which allows you to
define auxiliary passwords.

Figure 3: Table access rights for auxiliary passwords.

Read only Users can view the table, but cannot modify its data o
structure in any way.

Update Users can view the table and modify non-key fields on
They cannot insert or delete rows, nor modify key fields.

Data entry Users can view the table, modify non-key fields and
insert new rows. They cannot delete rows, nor modify
key fields for existing rows.

Insert & Users can freely insert, delete, or modify records. They
delete cannot change the structure of the table.
All Users can do almost anything to the table, including

changing its structure. They cannot modify the master or
auxiliary passwords.

Right Description

Right Description

Figure 4: Field access rights for auxiliary passwords.

None The user cannot view or change data in the field. Its
data (but not the existence of the field itself) is com-
pletely hidden.

ReadOnly Users can view the contents of the field, but cannot
modify them in any way.

All Users have all rights to the field, subject to the table
rights.

Columns & Rows
Click the New button to define a new auxiliary password.
When you enter the password, the Table rights and Field
rights panels become available, allowing you to limit the
access rights for each auxiliary password.

The table in Figure 3 describes the effect of limiting table
rights for an auxiliary password. Rights are listed in order,
from least to most expansive (i.e. each table right includes the
capabilities of the previous rights). The table in Figure 4
describes the effect of limited field rights for an auxiliary pass-
word. For each field in the table, you can double click on the
field or click on the Field Rights button to cycle through the
three available field rights.

The BDE will not allow you to define rights that are incom-
patible with each other. For example, if you define Insert &
delete table rights, then attempt to limit field rights, the dia-
log box will change table rights to Update. If you then try to
change table rights back to Insert & delete, your modified
field rights are changed back to All. This is necessary because
you must have all rights to all fields to delete a record. Note
that limited field rights are compatible with Data entry table
rights, because you don’t need to have rights to all fields to
insert a record.

In a similar vein, if you add a new field to a table after pass-
words have been defined, you may need to modify the rights
assigned to auxiliary passwords to provide access to this field.
This is because the BDE assigns None rights to the field for
all passwords that have Read only, Update, or Data entry
rights at the table level.

However, you must also be careful about interactions with
other table properties. As you saw in last month’s article, the
Paradox file format allows you to define a field as being
Required. You cannot post a record to the table unless a value
is provided. However, if users open the table with a password
28 August 1997 Delphi Informant
that grants Data entry table rights, but ReadOnly field
rights to the required field, they won’t be able to post a
new record because they cannot provide a value for this
field.

r

ly.
Where Are Passwords Stored?
The master password is stored in the table’s header in an
encrypted format. Auxiliary passwords are also in the
header, encrypted using the master password. This allows
the table to be decrypted with no other supporting files or
information. If a user or program presents an auxiliary
password, the BDE reads the encrypted master password
and uses it to decrypt each auxiliary password to see if
there is a match.
The BDE Session Password Buffer
When you open a Paradox table using the BDE, a default
session called (naturally enough) “Session” is created. You can
access this session using TSession properties, methods, and
events (described in detail later in this article). A session
object manages a virtual connection to one or more databas-
es; each session is considered to be a different user of the

database. You can manually create additional TSession objects to
create additional virtual users.

With respect to passwords, the BDE maintains a password
buffer at the session level. This buffer stores all passwords
used by Paradox tables within a session, and is big enough to
store a maximum of 25 passwords. If the user manually enters
a password, it’s added to the buffer. Likewise, if your applica-
tion adds a password in code, it’s added to the same buffer.
Note that if a password is added to the buffer twice, it’s listed
twice. If only one instance is removed, the other remains, and
access to the encrypted table is still available.

If your application needs to access a Paradox table, and the
BDE determines the table is encrypted, it will walk through
the list of passwords in the buffer, testing each one against the
master and auxiliary passwords stored with the table. For
every password in the buffer that matches a valid password for
the table, the union of rights will be granted.

For example, assume that password “DAN” grants Update table
rights and ReadOnly rights to fields 2 and 3 of a table, and pass-
word “BARB” grants Data entry table rights and ReadOnly
rights to fields 4 and 5 of the same table. If both passwords are in
the session buffer and you open this table, users will be granted
Data entry table rights overall. They will also be granted full edit
rights to all fields, because the ReadOnly rights granted by each
password are canceled by the full rights granted by the other
password to the fields in question.
Use Caution when Assigning Passwords
This union of rights also creates problems if you use one pass-
word to assign different levels of rights to different tables. For
example, assume that password “XYZZY” gives full access to
one table and password “PLUGH” gives read-only access to
the same table. Assume also that password “XYZZY” gives
read-only access to a second table.

Figure 5: The default password dialog box triggered by the
OnPassword event.

Columns & Rows
Along comes user Bob, a low-level clerk who is assigned read-
only access to the data in these tables. You have previously told
Bob to use “PLUGH” for the first table and “XYZZY” for the
second table. However, if Bob accesses both tables, both pass-
words are in the buffer for his session. If he reopens the form
showing the first table, he will have full access, because
“XYZZY” provides a higher level of access than “PLUGH.”
There are two lessons to be learned from this scenario:
1) When you define passwords for the tables in your appli-

cation, don’t use the same password to provide different
levels of access to your tables. Be consistent to ensure
that multiple passwords in the session buffer do not
grant unintended rights.

2) Instead of allowing users to enter table passwords direct-
ly, most developers require a user name and password to
log in to the whole application. Within a user configura-
tion table, the application reads a level of access for that
user, and this level is maintained as a system variable.
When access must be provided to an encrypted table,
the application then presents a password that is appro-
priate to the user level. This approach virtualizes Paradox
passwords to the application and user level.
Delphi TSession Methods and Events
When your program tries to open an encrypted table, the
BDE first checks the session’s password buffer for a valid
password, as previously described. If a valid password is not
found, the BDE reports insufficient password rights, and
your program then calls the OnPassword event for that ses-
sion. The default action for this event is to display the Enter
password dialog box shown in Figure 5.

You can bypass this dialog box by adding code to this event
handler that provides a password to the session. This is done
with the AddPassword procedure. For example, you might
maintain the user’s login name as an application variable, and
present a different password based on the user (and read from
a special configuration table).

You can force the OnPassword event to be fired at any time
by calling the GetPassword function. If the default password
dialog box is displayed, this function returns True if the user
clicked OK and False if the user clicked Cancel. If you add
your own code to this event handler, use the Continue para-
meter in the event procedure call to populate the
GetPassword return value.

To remove one or more passwords for a session, use the
RemovePassword or RemoveAllPasswords procedures, respectively.

Delphi provides no tools to enumerate the passwords for a table,
nor the passwords already in the buffer. This functionality is sup-
ported by the BDE, but is not displayed in TSession. (Note that
Paradox itself provides a method to enumerate the passwords for
a table, as an aid to documentation.)
Side Effects of Encrypting Tables
BDE operations against encrypted tables run approximately
10 to 15 percent slower than against non-encrypted tables.
29 August 1997 Delphi Informant
This is because the BDE must continually pass data read
from the table through the decryption algorithm, and insert-
ed or updated data through the encryption algorithm.

Another side effect is that encrypted tables do not compress
as well when they are zipped. Recall from the first article in
this series that Paradox tables use fixed-length block sizes,
with fields always occupying a pre-determined amount of
space in the table. This invariably results in a large amount
of blank space in the table. When this is coupled with the
repetitive data often found in normalized tables, it is not
unusual to see zip compression ratios of 85 to 90 percent for
a typical Paradox table.

When the table is encrypted, however, a mad jumble of
ASCII characters, with little or no repetition and no blank
space, replaces the data. Compression ratios for encrypted
tables usually run no higher than 10 to 15 percent.
How Secure Is the Password?
Paradox’s encryption algorithms are certainly not DES —
or anything as sophisticated. They use static encryption
and decryption rotors that perform multiple (but
pre-determined) transformations on each byte of the pass-
word. While the algorithm is not documented, it has been
reverse engineered by at least two companies: one that
markets a replacement Paradox engine, and another that
markets a decryption program for people who lose or
forget a table password.

The bottom line is that an encrypted table will stop a casu-
al user or experienced PC user who just wants to look at
your data. It will not stop a determined hacker who has
access to the decryption program, or a lot of time to
reverse engineer the decryption algorithm. For most types
of corporate data, Paradox encrypted tables provide more
than sufficient protection.
Table Language
Paradox tables use 8-bit character sets to store alphanumeric
data, giving up to 255 possible characters that can be stored.
When you save an alphanumeric character in an Alpha or
Memo field, the Paradox file format uses a single byte for
that character. Depending on the BDE’s language drivers, this
character can be displayed in different ways.

Columns & Rows
The BDE supports more than 100 language drivers, many of
which are suitable for Paradox tables. These drivers specify a
character set that matches a Windows character set (e.g. ANSI
1252) or a DOS code page (e.g. 437 or 850.) To modify the
Table Language driver, restructure the table in the Database
Desktop. Select Table | Restructure Table. Then under the
Table Properties drop-down list, select Table Language and
click on the Modify button.

Language drivers control which characters are treated as part
of the alphabet, because non-English languages include many
accented characters in addition to the standard 26 characters
in the English alphabet. A language driver also includes rules
for how accented lower-case characters are converted to upper
case, and for how an expanded alphabet should be sorted.
The driver may also include rules for character substitutions,
or the byte value that is used when characters from one lan-
guage set are added to a table using a different language set.

Note that your Windows regional settings have no effect on the
characters that are displayed when a language driver is selected.
You do not need to match the language driver for a table with
the regional settings defined in Windows. This is because
Windows has the ability to use a different Windows character set
or DOS code page for each window open on the desktop —
even child windows in an MDI application. When you specify a
language driver for a table, then display that table within an
application, the BDE tells Windows to use the character set or
code page that is appropriate to the language driver.

You can easily test this for yourself in the Database Desktop:
1) Create a simple table using the default “Paradox ASCII”

driver, with an A1 field.
2) Populate this table with 10 records representing the

ASCII characters from 161 to 170.
3) Make a copy of the table. Restructure the copy and

change its language driver, for example, to “Pdx ANSI
Spanish.”

4) View the two tables side by side, as shown in Figure 6.
Although your regional settings remain the same, you
will see different characters in each table for each of the
10 records displayed!

The BDE maintains a current language driver at the session level,
using the TSession.Locale property. If you open two tables with
different language drivers, the BDE will set its current language
driver using the last table opened. This can create inconsistent
30 August 1997 Delphi Informant

Figure 6: Viewing two tables with different language drivers.
behavior if you attempt to copy data between these tables; you
may not see the extended characters you expect to see.

Note that the BDE does not automatically transliterate from the
ANSI character set to the one used by the table. For TStringField
and TMemoField objects, you can set the Transliterate property to
True to force the BDE to perform character translations for you.
Setting this property to True causes the AnsiToNative function to
be called whenever a value is written to the field. This function
uses TSession.Locale to determine the character set or code page
to be used for the translation.

You may see a minor performance slowdown if you use differ-
ent language drivers. If the driver doesn’t support binary sort-
ing, where the character sequence is the same as ASCII, an
extra level of conversion is needed whenever a sort operation
is performed, because the data is not being sorted in a straight
line from 0 to 255.
Last Call
Next month, the final article in this series will examine multi-
user issues. It will show you how the Paradox file format man-
ages and limits concurrent access to resources, including tables
and records, to ensure data integrity. It will also demonstrate the
functions of the various network and locking control files. ∆

Dan Ehrmann is the founder and President of Kallista, Inc. a database and
Internet consulting firm based in Chicago. He is the author of two books on
Paradox, and is a member of Team Borland and Corel’s CTech. Dan was the
Chairman of the Advisory Board for Borland’s first Paradox conference, which
evolved into the current BDC. He has worked with the Paradox file format for
more than 10 years. Dan can be reached via e-mail at dan@kallista.com.

31 August 1997 Delphi Informant

Battening the Hatches
Inside InterBase: Part III

Greater Delphi
InterBase / SQL

By Bill Todd
This third of a five-part series on InterBase examines the three levels of security
for InterBase databases: physical security of the database server, operating

system security, and that of InterBase itself.
Physical Security
Many organizations overlook physical securi-
ty. However, if data confidentiality is really
important, physical security must be given
careful consideration. Remember that anyone
who has ever installed a hard disk can remove
one in about ten minutes, then access your
data at leisure. The only way to prevent this
is to make sure that the machine hosting the
database is physically secure. The same goes
for any copies, including backup tapes.
OS Security
The second level of security concerns the
operating system on the database server.
InterBase was designed to run on a secure
OS; therefore, InterBase database files are
not encrypted. Anyone with access to the
file can view and copy it with a disk editor.
This means you can’t have a secure
InterBase database on an OS that lacks
security, such as Windows 95 or Windows
3.x. Fortunately, securing the database at
the OS level is easy, because only the
InterBase process directly reads from or
writes to the database file, and only
InterBase needs access to the .GDB file.
Database users need not log on to the
machine on which InterBase is running.
Most database authorities recommend that
the database run on a dedicated machine,
particularly if NetWare or Windows NT is
the operating system, to provide the best pos-
sible performance and stability. This is also
an excellent architecture from a security
standpoint, because you can restrict login
access to the database administrator only. To
access the database, users need only establish
communication with InterBase across the
network. This arrangement also has econom-
ic advantages. For example, 50 users can
simultaneously access an InterBase database
running on a two-user license of NetWare or
Windows NT. Of course you still need a 50-
user license for InterBase, but you don’t need
to license the same users for the OS on the
machine that hosts InterBase.
InterBase Security
After you’ve implemented physical and OS
security, it’s time to examine the InterBase
security features that let you control access to
the data and objects in your database. When
you install InterBase, a server-security database,
ISC4.GDB, is installed in the INTRBASE
directory, as is a backup copy, ISC4.GBK.
Initially this database contains one user,
SYSDBA, whose password is masterkey.

Greater Delphi
Users must be added to the server before they can use Server
Manager to connect to the security database. After starting
Server Manager, select File | Server Login and connect to your
server. Next, select Tasks | User Security to display the InterBase
Security dialog box shown in Figure 1.

Before you do anything else, click the Modify User button
to display the User Configuration dialog box shown in
32 August 1997 Delphi Informant

Figure 2: The User Configuration dialog box.

Figure 1: The InterBase
Security dialog box in
Server Manager.

Privilege Description
SELECT User can read data from the table using the

SQL SELECT statement.
INSERT User can insert new rows into the table.
UPDATE User can change data in a row or a table.
DELETE User can delete rows from a table.
REFERENCES User can insert record into or modify values

in a referential-integrity child table for
which this table is the master. Users don’t
need the REFERENCES privilege to the mas-
ter table if they have the SELECT privilege.

ALL All of the privileges listed above.
EXECUTE This privilege applies only to stored proc-

dures, and grants the user the right to ex-
cute them.

Figure 3: Table-level access privileges.
Figure 2, then assign a new password to SYSDBA. Until
you do this, everyone who knows the default password has
complete access to your data.

Notice that the user name is grayed, and can’t be changed.
To alter it, delete the name and add a new one. Once
you’ve given SYSDBA a new password, click the Add User

button and add as many new users as you need. Enter every
user that will access any database on your server.

When users have access to a server, they can open
any database on that server. However, only SYSDBA
and the user that created the database — its owner
— can access tables or other database objects. Both
the database owner and SYSDBA can drop the data-
base, and both can grant object access to other users,
by means of the SQL GRANT command:

GRANT <list of privileges>

ON <table or object name>

TO <list of users>

[WITH GRANT OPTION]

Because views are virtual tables, all the privileges in Figure 3
apply to updateable views, just as they do to tables.
Providing REFERENCES
These privileges are straightforward, with the possible
exception of REFERENCES. To understand REFERENCES,
suppose you have an Employee table and a Payroll table.
You have declared referential integrity to ensure that it’s
impossible to add a row to the Payroll table for an
employee who does not exist in the Employee table. One
of your users is a payroll clerk who needs to maintain the
Payroll table, but isn’t authorized to access the Employee
table. The following GRANT statements provide the
required access privileges:

GRANT ALL ON Payroll TO Fred

GRANT REFERENCES ON Employee TO Fred

The grant of all privileges on the Payroll table lets Fred
insert, delete, and update rows. When Fred adds a new row
to the Payroll table, the grant of REFERENCES on the
Employee table allows InterBase to validate that the employ-
ee record exists, but doesn’t allow Fred to view the data in
the Employee table.

There are three cases in which users, before exercising privi-
leges for a particular table, must have access privileges on
other tables:
1) To insert, delete, or update in a referential-integrity

child, the user must have either REFERENCES or
SELECT privileges on the referential-integrity master.

2) To perform an update or insert on a table with a check
constraint, the user must have SELECT privileges on
that table.

3) If a table constraint includes a query (SELECT), the
user must have SELECT privileges on all tables accessed
by the query.

Greater Delphi
Access privileges granted to a table or view will automatical-
ly apply to any new columns added. If you don’t want privi-
leges to apply to new columns, create a view and grant users
access to it. If you add a column, you can decide at that
time whether to add it to the existing view, or create a new
view for those who need to work with it.

You can also grant access to tables and views on a column-
by-column basis. Only two privileges are available at the
column level: INSERT and UPDATE. SELECT and
DELETE privileges are available only at the table level. At
first it might appear that if you can’t grant SELECT privi-
leges at the column level, you can’t prevent users from
seeing certain columns in a table. However, that’s not the
case. If you want to allow a user to see a subset of
columns, create a view that shows only the subset. Grant
the user access to the view, but not the table, and grant
the view access to the table.

The ability to grant INSERT and UPDATE access at the col-
umn level lets you grant users SELECT access to an entire table
or view, allowing them to see all the columns, but change the
value of only some. To insert new rows in a table or view, the
user must have INSERT access for all columns that have a NOT
NULL constraint. Any columns users can’t access will be set to
their default value, if any, or to null when inserting a new row.
Advanced GRANT
The examples of the GRANT command shown so far in this
article have granted privileges to a single user. However, any
GRANT statement can include a comma-separated list of users:

GRANT ALL ON Customer, Orders, Items

TO Mary, Fred, PROCEDURE Update_Status

This statement not only grants all privileges to Mary and
Fred, but also to the stored procedure Update_Status. This
adds another dimension by letting users execute stored
procedures to make changes on tables that they couldn’t
otherwise access. The users need only EXECUTE access to
the stored procedure. This lets you provide tightly con-
trolled, limited data access. It’s not uncommon for one
stored procedure to call another; if procedure A calls B,
then A must have EXECUTE access for B.

If you need to grant one or more access privileges to all users,
grant them to the special user PUBLIC. Note, however, that
any privileges you grant to PUBLIC cannot be revoked from
individual users. They can be revoked only from PUBLIC,
which will revoke them from all users. Privileges granted to
PUBLIC are granted only to users, not to stored procedures or
views; you must explicitly grant privileges to each stored
procedure and view.
GRANTing to Others
With the SQL GRANT command, not only can you grant
access privileges to one or more users, you can also give those
users the authority to grant privileges to yet other users, through
the optional WITH GRANT OPTION clause. The statement:
33 August 1997 Delphi Informant
GRANT ALL ON Payroll TO Fred WITH GRANT OPTION

not only grants all access privileges to Fred, but also allows
Fred to grant any privilege to other users. Use the WITH
GRANT OPTION clause very sparingly. If you grant a privi-
lege to Fred, and Fred grants the privilege to others, revoking
Fred’s privilege will also revoke the privilege from everyone to
whom Fred granted it. It’s much better to let only the DBA
grant and revoke access privileges, which is done through the
SQL REVOKE command.
Revoking Privileges
The syntax of REVOKE is almost identical to the syntax for
GRANT. For example, the statement:

REVOKE ALL ON Payroll FROM Fred

revokes Fred’s privileges on the Payroll table. Only SYSDBA,
or the user who granted the privilege, can revoke it. If two
users both grant a privilege to a third user, both must revoke
the privilege before the third user will lose it. This is another
example of why it’s best to allow only the DBA to grant
access privileges. The ALL privilege works the same way in a
REVOKE statement that it does in a GRANT. The following
statement revokes all privileges except EXECUTE from all
users of the Employee table:

REVOKE ALL ON Employee FROM PUBLIC
Watch What You DROP
You need to be aware of one other InterBase security aspect,
over which you have no control. No user, including
SYSDBA, can drop an object that’s referenced elsewhere in
the database. For example, even SYSDBA can’t drop a table
if that table is referenced in the definition of a view, or in a
referential-integrity declaration.
Conclusion
InterBase provides excellent security for your data — if you
provide physical security for the server and all database
copies, use an OS that lets you prevent unauthorized access
to the database files, and carefully grant access to objects
within the database. By restricting users’ access to objects
within the database (by coupling GRANT and REVOKE
with views and stored procedures), you can provide any level
of control you need. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. He is a Contributing Editor of Delphi
Informant; co-author of Delphi 2: A Developer’s Guide [M&T Books, 1996],
Delphi: A Developer’s Guide [M&T Books, 1995], Creating Paradox for Windows
Applications [New Riders Publishing, 1994], and Paradox for Windows Power
Programming [QUE, 1995]; and is a member of Team Borland providing technical
support on CompuServe. He has also been a speaker at every Borland Developers
Conference. He can be reached on CompuServe at 71333,2146, on the Internet at
71333.2146@compuserve.com, or at (602) 802-0178.

34 August 1997 Delphi Informant

Your First Component Editor
Creating a Custom Editor for Panel Components

Visual Programming
Delphi

By John Ayres

Figure 1: The s
Delphi stands out among application development systems for several rea-
sons. One is that its development environment can be customized to a

remarkable degree. For example, developers can create custom component
editors. Component editors add options to the pop-up menu that’s displayed
when you right-click on a component, and provide a dialog box for interactive
editing when the component is double-clicked.
The difference between a property editor and a
component editor is that the property editor is
used for a specific property type on any com-
ponent (such as the String List editor for the
Items property of a ComboBox component, or
the Lines property of a Memo component),
whereas the component editor affects only a
single component, such as the Fields editor,
when you double-click on a Table component.

This article demonstrates how easy it is to
create component editors, which are perfect
ample application at design time.
for providing a customized, user-friendly
method for developers to configure custom
components. Component editors can be
shipped in the same code as a new compo-
nent, or they can be created and installed
independently. In this article, we’ll create a
new component editor for Panel compo-
nents. This component editor will display a
dialog box that enables us to choose a style
and a color for our panel, and preview it at
the same time. It will also add two func-
tions to its pop-up menu, one for selecting
the style and one for clearing it.
The Dialog Box
First, create a new project. Place two BitBtn
components, a RadioGroup component, a
Panel, a ColorGrid (from the Samples page),
and a Bevel on the main form, and arrange
them to resemble the form shown in Figure 1.
Then, set the components’ properties as
shown in Figure 2.

After the appropriate properties are set, we
must add a line of code to make the form
functional. In the OnClick event for
ColorGrid1, add this statement:

Panel1.Color := ColorGrid1.ForegroundColor;

Component Property Value

BitBtn1 Kind bkOK
BitBtn2 Kind bkCancel
RadioGroup1 Caption Panel Style

Items Engraved
Edged
Raised Frame
Sunken Frame

ItemIndex 0
Panel1 BevelInner bvRaised

BevelOuter bvLowered
ColorGrid1 GridOrdering go8x2

BackgroundEnabled False
Font.Name Arial
Font.Size 8
ForegroundIndex 7

Bevel1 Shape bsTopLine
Form1 Caption Set Panel Style

Name PanelStyleSelector
BorderStyle bsDialog
Position poScreenCenter

Figure 2: Set the values for these component properties.

Visual Programming
Then, in the OnClick event for RadioGroup1, add:

case RadioGroup1.ItemIndex of
0 :

begin
Panel1.BevelInner := bvRaised;

Panel1.BevelOuter := bvLowered;

Panel1.BorderWidth := 0;

Panel1.BevelWidth := 1;

end;
1 :

begin
Panel1.BevelInner := bvLowered;

Panel1.BevelOuter := bvRaised;

Panel1.BorderWidth := 0;

Panel1.BevelWidth := 1;

end;
2 :

begin
Panel1.BevelInner := bvLowered;

Panel1.BevelOuter := bvRaised;

Panel1.BorderWidth := 5;

Panel1.BevelWidth := 2;

end;
3 :

begin
Panel1.BevelInner := bvRaised;

Panel1.BevelOuter := bvLowered;

Panel1.BorderWidth := 5;

Panel1.BevelWidth := 2;

end;
end;

We now have a functioning dialog box for our component
editor that will enable us to choose a color and four different
styles for our panel.
The TComponentEditor Object
All new component editors descend from the
TComponentEditor object. This is an abstract object
defined in the DsgnIntf unit. When writing a new
component editor, we can consider TComponentEditor to
be declared as:
35 August 1997 Delphi Informant
TComponentEditor = class(TObject)
private

FDesigner: TFormDesigner;

FComponent: TComponent;

public
procedure Edit; virtual;
function GetVerbCount: Integer; virtual;
function GetVerb(Index: Integer): string; virtual;
procedure ExecuteVerb(Index: Integer); virtual;
property Component: TComponent read FComponent;

property Designer: TFormDesigner read FDesigner;

At design time, when you right-click on a component, the
component editor associated with that component calls its
GetVerbCount method. It then calls GetVerb, which returns
the options to add to the context-sensitive menu. If you then
select one of these options, the ExecuteVerb method is called,
executing the code associated with that menu option.

Double-clicking on a component causes the component edi-
tor to execute the Edit procedure, which by default calls the
ExecuteVerb method to execute the code associated with the
first option on the pop-up menu. The FComponent property
gives us access to the component on which the editor is cur-
rently working, so we can make appropriate changes to other
properties. The FDesigner property provides access to the
form designer, which is responsible for updating changes
made to forms and components at design time.

For this editor, we want to modify the style of the panel, and
remove that style. Because the Edit procedure, by default,
executes the first command in the pop-up menu, the only
methods we need to override are ExecuteVerb, GetVerb, and
GetVerbCount.

Now that we have designed our form, add DsgnIntf to the
uses clause of our unit. Next, we will derive a new compo-
nent based on TComponentEditor.

Add the following code to the type section, after the declara-
tion for the TPanelStyleSelector form:

TStyleSelector = class(TComponentEditor)
public
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer): string; override;
procedure ExecuteVerb(Index: Integer); override;

end;

Our first function, GetVerbCount, is called when the right
mouse button is clicked, bringing up the pop-up context
menu. This function will return the number of options we’ll
add to the menu. Because we only have two, the code for this
function will be:

function TGlyphSelector.GetVerbCount: Integer;

begin
Result := 2;

end;

Next, GetVerb is called a number of times equal to the result
from GetVerbCount. This function returns the options to be
displayed on the menu, in the order they are to be displayed
(see Figure 3). We need to return the appropriate text, based

Visual Programming
on an index passed to the func-
tion that represents which posi-
tion in the menu is needed next.
Although we have two options
to add to the menu, the index
passed to this function is zero-
based, so it receives 0 first, then
1. These indexes will be associ-
ated with the option that
appears in the menu, so the
code that performs the action in
the next procedure will be based
on these indexes. Therefore, our
code will resemble:

function TStyleSelector.GetVerb(Index: Integer): string;
begin

case Index of
0 : Result := 'Select St&yle...';

1 : Result := 'C&lear Style';

end;
end;

Index 0 is now associated with Select Style, and index 1 with
Clear Style. The only thing left is to write the code that will
be performed when the user selects an option. When the
user chooses an option from the context-sensitive menu, the
ExecuteVerb method is called (see Figure 4). It’s based on the
index associated with that option, so we only need to per-
form a case statement similar to GetVerb, and provide the
necessary code for each index. Remember, when a user
double-clicks the component, it will automatically perform
the code associated with the first option.

For our first option, Select Style, we need to show the form we
created, and allow the user to select a color and style for the
panel. We then assign those properties to the panel, and call
Designer.Modified. This method informs the form designer that a
component has changed visually, and to perform the necessary
updates, both on the form and in the Object Inspector. Our sec-
ond option, Clear Style, will simply reset these properties to the
defaults for a newly created panel.

In a component editor that is more elaborate than the one
illustrated here, we may want to have the component edi-
tor reflect the current state of the component when it’s
activated, rather than just default values. This can be done
after the component editor form is created, but before it’s
presented to the user. For our example, this isn’t entirely
practical, as a Panel could have properties set to values
that wouldn’t directly relate to options on our component
editor form.

The final procedure that must be added to this unit is Register.
This procedure will register this component editor with the
VCL and Delphi’s Open Tools API, and associate it with
Panel components. The syntax for this function is:

procedure Register;

begin
RegisterComponentEditor(TPanel, TStyleSelector);

end;

Figure 3: The menu items
displayed in order.
36 August 1997 Delphi Informant
The RegisterComponentEditor procedure takes two arguments.
The first is the component that the editor will be associated
with, and the second is the class of the component editor
itself. The entire source file is shown in Listing Four begin-
ning on page 37.
Installation and Use
To install our new component editor, save the unit as
EDITPANL.PAS. Then perform the following steps:

For Delphi 1: Click on Options | Install Components, then
click on the Add button.
For Delphi 2: Click on Component | Install, then click on
the Add button.
For Delphi 3: Click on Component | Install Component.

In each case, add EDITPANL.PAS, as if it were any other
component (the EDITPANL.DFM file must be in the same
directory as the .PAS file).

After the library is rebuilt, simply drop a Panel component on the
form. If you right-click on the component, you’ll see the new
context menu. Double-clicking the component or choosing the
Select Style option from the menu will open our form. After you
have selected an appropriate style and clicked OK, our panel will
be modified to reflect the new properties. If we select Clear Style

from the pop-up menu, it will reset the panel to its default state.
procedure TStyleSelector.ExecuteVerb(Index: Integer);

var
PanelStyleSelector: TPanelStyleSelector;

begin

case Index of
0 :

begin { Select Style was chosen. }
PanelStyleSelector :=

TPanelStyleSelector.Create(Application);

try
if PanelStyleSelector.Showmodal = mrOK then

begin
TPanel(Component).BevelInner :=

PanelStyleSelector.Panel1.BevelInner;

TPanel(Component).BevelOuter :=

PanelStyleSelector.Panel1.BevelOuter;

TPanel(Component).BorderWidth :=

PanelStyleSelector.Panel1.BorderWidth;

TPanel(Component).BevelWidth :=

PanelStyleSelector.Panel1.BevelWidth;

TPanel(Component).Color :=

PanelStyleSelector.Panel1.Color;

end;
finally

PanelStyleSelector.Free;

end;
end;

1 :

begin { Clear Style was chosen. }
TPanel(Component).BevelInner := bvNone;

TPanel(Component).BevelOuter := bvRaised;

TPanel(Component).BorderWidth := 0;

TPanel(Component).BevelWidth := 1;

TPanel(Component).Color := clBtnFace;

end;

end;

Designer.Modified;

end;

Figure 4: The ExecuteVerb method.

Visual Programming
Conclusion
As we have seen, component editors are easy to create, and
can provide an interactive, fun method for developers to use
your component. An editor could be complex, with multi-
ple dialog boxes or even full-fledged configuration wizards.
Component editors allow you to create highly customized,
user-friendly editors for new or existing components, with-
out imposing a system-wide modification that would affect
all components, such as a property editor would. ∆
Reference
Developing Custom Delphi Components by Ray Konopka
[Coriolis Group Books, 1996].

The file referenced in this article is available on the Delphi
Informant Works CD located in INFORM\97\AUG\DI9708JA.

John Ayres is a consultant for Ensemble Systems Consulting in Dallas, using
Delphi to produce high-end client/server applications for various Fortune 500
companies. With over 8 years of programming experience, he’s worked for a vari-
ety of companies, producing a broad range of software, from third-party add-in
utilities to games. He keeps himself busy by co-authoring The Tomes of Delphi:
Win32 Core API (ISBN 1-556225563) and other Windows programming books
for Delphi. For more information, visit http://www.WordWare.com
Begin Listing Four — EDITPANL.PAS
unit Editpanl;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,

Controls, Forms, Dialogs, ColorGrd, StdCtrls, ExtCtrls,

Buttons, DsgnIntf;

type
TPanelStyleSelector = class(TForm)

Panel1: TPanel;

RadioGroup1: TRadioGroup;

ColorGrid1: TColorGrid;

BitBtn1: TBitBtn;

BitBtn2: TBitBtn;

Bevel1: TBevel;

procedure RadioGroup1Click(Sender: TObject);

procedure ColorGrid1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

TStyleSelector = class(TComponentEditor)
public

function GetVerbCount: Integer; override;
function GetVerb(Index: Integer): string; override;
procedure ExecuteVerb(Index: Integer); override;

end;

procedure Register;
37 August 1997 Delphi Informant
implementation

{$R *.DFM}

function TStyleSelector.GetVerbCount: Integer;

begin
Result := 2;

end;

function TStyleSelector.GetVerb(Index : Integer): string;
begin

case Index of
0 : Result := 'Select St&yle...';

1 : Result := 'C&lear Style';

end;
end;

procedure TStyleSelector.ExecuteVerb(Index: Integer);

var
PanelStyleSelector: TPanelStyleSelector;

begin
case Index of

0:

begin { Select Style was chosen. }
PanelStyleSelector :=

TPanelStyleSelector.Create(Application);

try
if PanelStyleSelector.Showmodal = mrOK then

begin
TPanel(Component).BevelInner :=

PanelStyleSelector.Panel1.BevelInner;

TPanel(Component).BevelOuter :=

PanelStyleSelector.Panel1.BevelOuter;

TPanel(Component).BorderWidth :=

PanelStyleSelector.Panel1.BorderWidth;

TPanel(Component).BevelWidth :=

PanelStyleSelector.Panel1.BevelWidth;

TPanel(Component).Color :=

PanelStyleSelector.Panel1.Color;

end;
finally

PanelStyleSelector.Free;

end;
end;

1:

begin { Clear Style was chosen. }
TPanel(Component).BevelInner := bvNone;

TPanel(Component).BevelOuter := bvRaised;

TPanel(Component).BorderWidth := 0;

TPanel(Component).BevelWidth := 1;

TPanel(Component).Color := clBtnFace;

end;
end;

Designer.Modified;

end;

procedure TPanelStyleSelector.RadioGroup1Click(

Sender: TObject);

begin
case RadioGroup1.ItemIndex of

0 :

begin
Panel1.BevelInner := bvRaised;

Panel1.BevelOuter := bvLowered;

Panel1.BorderWidth:= 0;

Panel1.BevelWidth := 1;

end;
1 :

begin
Panel1.BevelInner := bvLowered;

Panel1.BevelOuter := bvRaised;

Panel1.BorderWidth:= 0;

Panel1.BevelWidth := 1;

end;
2 :

Visual Programming
begin
Panel1.BevelInner := bvLowered;

Panel1.BevelOuter := bvRaised;

Panel1.BorderWidth:= 5;

Panel1.BevelWidth := 2;

end;
3 :

begin
Panel1.BevelInner := bvRaised;

Panel1.BevelOuter := bvLowered;

Panel1.BorderWidth:= 5;

Panel1.BevelWidth := 2;

end;
end;

end;

procedure TPanelStyleSelector.ColorGrid1Click(

Sender: TObject);

begin
Panel1.Color := ColorGrid1.ForegroundColor;

end;

procedure Register;

begin
RegisterComponentEditor(TPanel, TStyleSelector);

end;

end.

End Listing Four
38 August 1997 Delphi Informant

39 August 1997 Delphi Informant

Component Creation
Construction Guidelines for VCL Components

Op Tech
Delphi 1 / Delphi 2

By Dan Miser
Components are the essence of Delphi. A well written and well organized
component can aid Delphi programmers of all levels. Conversely, a poorly

written component can keep any programmer from being productive. This arti-
cle outlines some simple steps to help ensure your components end up being
put to use.
File Organization
The first thing a component user must do
when they receive a component is install it to
the Component palette. There are three
choices for distribution:

all .PAS files;
a .PAS registration unit, with supporting
.DCU files; or
all .DCU files.

If there is some private interest that needs to
be protected, .DCU files appear to be an
attractive option. After all, the component
user can’t look at the component’s source
code if it isn’t distributed. In addition, if the
Register procedure of the component is locat-
ed inside the .DCU, the component user
won’t have the power to change on which
page the component is installed. This defeats
the purpose of Delphi’s open and config-
urable environment.

Basic Delphi etiquette requires a component
writer to distribute the registration unit as a
.PAS file. Supporting .DCU files can also be
distributed, if necessary. This allows the com-
ponent user to install the component on any
Component palette page. However, Borland’s
.DCU format is subject to change (and has
changed frequently over the years). A change
in the .DCU format from Borland can mean
incompatibility for all .DCU files not created
with the same version of Delphi (sometimes
even minor versions). This means that a
component user must have faith that they
can obtain an updated .DCU that can match
the .DCU format-du-jour. The moral of this
story is that a component user must be
offered some way to obtain source code for
all of the component’s files. For these rea-
sons, many users don’t even consider employ-
ing a .DCU component solution.

In addition, if the component has any special
property editors or component editors, they
should be placed in the same unit as the
Register procedure. This is how Borland dis-
tributes their VCL components. For example,
looking at \Delphi\Lib\stdreg.pas will reveal
several property editors and a component edi-
tor in the same file that contains registration
routines for the standard components.

However, if the property editor contains
a form, the property editor declaration
should reside in that form’s unit. By placing
the declaration there, Delphi will only add
the overhead of the property editor’s form to
COMPLIB.DCL. Because the property edi-
tor’s form will never be referenced by an appli-
cation, either directly or indirectly, the property
editor will not be compiled into the final .EXE.
Tying a Component to a DLL
There are two ways to access a DLL func-
tion: static import and dynamic import.
Using the static import method requires that
the DLL filename be known at compile time.
In addition, after the function is imported
from a DLL via static importing, that func-

Figure 1: Delphi fails to load COMPLIB.DCL because of bad DLL
linking.

Op Tech
tion must exist in that DLL. If the DLL cannot be found,
Windows won’t let the process run.

Dynamic importing requires more work, but the payoff is
tremendous: The programmer can recover gracefully from an
error while trying to load a DLL. In addition, the name of
the DLL doesn’t need to be known at compile time, thus
adding flexibility to the design.

When writing a component wrapper around a DLL, the
process responsible for loading the DLL is Delphi. This is
because when the component was installed in Delphi, it was
placed in Delphi’s component library, COMPLIB.DCL. If
the link to the DLL is static and the DLL doesn’t exist,
COMPLIB.DCL will render Delphi into a useless state (see
Figure 1). To correct the error, the user must know what
caused it. Even then, the user has no way of knowing the
name of the offending DLL, or if this error was caused by
only one missing DLL. Instead, the usual course of action is
to copy a backup version of COMPLIB.DCL to the
\Delphi\Bin directory.

The best way to ensure this problem does not occur is to use
dynamic importing of the DLL functions. This requires a call
to LoadLibrary, followed by a call to GetProcAddress, for each
and every function that must be called in the component (see
Figure 2). The call to AddExitProc in the unit’s initialization
section is included for compatibility with Delphi 1 and 2. In
Delphi 3, Borland recommends the finalization section be
used instead of AddExitProc for exit behaviors such as this.

By calling LoadLibrary, the error checking can now occur at
the component level. This provides more control than the
error checking and reporting done by Windows. In Figure 2,
the component checks to make sure the DLL was loaded suc-
cessfully. If it wasn’t, a message is shown explaining the prob-
lem. (Note that if an exception is raised here, Delphi will still
be unable to load the component library.) Next, the functions
from the DLL are imported using GetProcAddress. If there is
an error importing these functions, the result of the
GetProcAddress call will be nil. Otherwise, the result will be a
40 August 1997 Delphi Informant
valid address which your component will use to call the DLL
function. This is more sophisticated than letting Delphi dis-
play a cryptic error message.

Note also that the return result of LoadDLL is an indication
of whether the DLL was loaded successfully. If it was,
ExitProc is set up to free the DLL when the application ends
(or the component is destroyed).
16- and 32-bit Resource Files
The only difference between 16- and 32-bit resource files
is the signature block. The format of the individual stan-
dard resources has not changed from 16- to 32-bit envi-
ronments. This means that when all the appropriate
resources are bound together into one resource file, the
difference is slight. However, the difference is enough to
require every resource file built in 16-bit Windows to be
rebuilt for access in 32-bit Windows. The easiest way to
keep these files portable is to save the 16-bit .RES file as
implementation

const
DLLName = 'GOOD.DLL';

DLLProcedure1 : procedure = nil;
var

DLLHandle : THandle;

function LoadDLL : Boolean;

var
OldFlag: Word;

begin
Result := False;

{ Turn off system error message. }
OldFlag := SetErrorMode(SEM_NOOPENFILEERRORBOX);

DLLHandle := LoadLibrary(DLLName);

{ Restore system error messages. }
SetErrorMode(OldFlag);

{$IFDEF WIN32}
if DLLHandle = 0 then
{$ELSE}
if DLLHandle <= HINSTANCE_ERROR then
{$ENDIF}

begin
ShowMessage('Cannot find file: '+DLLName);

Exit;

end;

@DLLProcedure1 := GetProcAddress(DLLHandle, 'DLLProcedure1');

Result := True;

end;

procedure UnloadDLL; far;
begin

FreeLibrary(DLLHandle);

end;

initialization

if LoadDLL then
AddExitProc(UnloadDLL);

end.

Figure 2: A dynamic import.

Op Tech
an RC script, while saving all the standard resources in
their native file format.

An RC file is nothing more than an ASCII file with a specific
format. RC files are used by resource compilers to identify
which resources to include, and where to find them. In its
simplest form, the format of an RC file is as follows:

nameID ResourceType filename

Some of the basic ResourceTypes available for this format are:
BITMAP, CURSOR, and ICON. A sample RC script would
look like this:

TCLICKLABEL BITMAP "CLKLABEL.BMP"

This would assign the bitmap located in the file
CLKLABEL.BMP to a bitmap resource type, and would
be identified with the resource name TCLICKLABEL.
Because the RC script and bitmap file format are both
accessible in 16- and 32-bit Windows, the only thing that
must be done is compile the resource file to a .RES format
for the appropriate environment.

Both Delphi 1 and 2 contain a resource compiler (written by
Borland) that will create resource files from RC script files for
both environments. The original Microsoft Windows
Resource Compiler for 16- and 32-bit environments can be
obtained from any number of Microsoft Developer resources.

To compile an RC script to a 16-bit resource file, make sure
\Delphi\Bin is in the path, and type:

BRC -R -FOFILENAME.R16 FILENAME.RC

32-bit resource files are created in a similar fashion. Make
sure the Delphi 2 binary directory is in the path, and type:

BRC32 -R -FOFILENAME.R32 FILENAME.RC

The 32-bit version also has the capability to create 16-bit
resource files. This can be accomplished by adding a -31 flag
(for Windows 3.1) to the previous command:

BRC32 -R -31 -FOFILENAME.R16 FILENAME.RC

For more information on RC files, including a complete
description of resource types available, see “RC (Resource
Statements)” in the online Help in WINAPI.HLP.

Now that the resource files are created, it’s time to put
them to use.
Figure 3: File organization for automatic component installation.
16- and 32-bit Component Portability
All well written components should have their own icon to
display on the Component palette. This helps to readily iden-
tify a component. If this file cannot be found, default icons
will be used to identify the component. While this may be
fine for extremely limited production, it is of critical impor-
tance to distinguish components — both in name and icon
41 August 1997 Delphi Informant
— from all other components. Imagine how difficult it
would be to use the Component palette if everyone decided
to not create custom icons.

Delphi has a clearly documented system for registering
components. For components that need to be installed in
the component library, Delphi finds the Register procedure
in that unit to determine which component should be
installed, and to which Component palette page it should
be added. Next, Delphi looks for a .DCR file with the
same file name as the registration unit. This .DCR file is
simply a resource file that contains a bitmap. This bitmap
will be placed on the Component palette to represent the
newly registered component. If Delphi finds the .DCR file,
it binds that resource file implicitly into COMPLIB.DCL.

After Delphi has linked the resource file into the component
library, it looks for a bitmap resource with the same name as
the installed component’s class name. For example, if a com-
ponent named TClickLabel is being installed, the bitmap
resource must be named TCLICKLABEL for Delphi to
attach the bitmap to the component. In Delphi 1, it’s neces-
sary to name this bitmap resource using all capital letters.
This is in direct contradiction to the documentation, but it
is necessary. If Delphi doesn’t find this resource, it assigns
the component’s parent’s bitmap to represent the component
on the Component palette.

This information has led many component authors (who
wish to provide a 16- and 32-bit solution) to adopt the file
organization represented in Figure 3. However, this scheme
severely limits unit filenames. As you can see, filenames can
be a maximum of 6 characters plus the 16/32 designation to
keep the files easily documented. In the finite world of 8.3
filenames, it is hard enough to come up with a meaningful
and relevant unit filename. Add to this the population of
existing and future Delphi components, and the chances of a
unit name collision increase dramatically.

Figure 4: File organization for optimized component installation.

Op Tech
Borland provides a mechanism to deal with the minutiae of
component installation. It works well for most cases; how-
ever, in true Borland tradition, if their way doesn’t work for
all cases, their architecture is open enough to allow anyone
to change it. By implementing the file organization shown
in Figure 4, Delphi can share a component between the
two environments with minimal work. Figure 5 is a typical
component registration unit.

Notice in Figure 4 that we did not name our resource files
with the .DCR extension. Therefore, Delphi cannot implicit-
ly link the resource file, and should assign a default icon.
However, the conditional directive {$IFDEF WIN32}, com-
bined with the include resource file directive {$R}, will bind
the appropriate resource file to COMPLIB.DCL explicitly.
Delphi doesn’t care how the component’s bitmap was placed
in COMPLIB.DCL; it only cares about finding a bitmap
resource with the same name as the component.
42 August 1997 Delphi Informant
There’s an additional benefit to placing the component’s
palette bitmap in a non-DCR resource file. All other
resources for this component can now be placed in that
resource file. This will centralize all resources, making it easier
to manage. For example, if a custom cursor was also required
for a component, it could be placed in the same file as the
component bitmap by simply adding the appropriate line to
the RC file.
Conclusion
This article has shown several pitfalls to avoid during the
intricate process of component creation. In addition, tips
on how to automatically share a component between 16-
and 32-bit Windows were given. By following these simple
steps, Delphi programmers everywhere can start to realize
the potential of Delphi’s most powerful force — well
written components. ∆

Dan Miser is a Senior Software Engineer at COMPS InfoSystems in San Diego.
He recently spoke about the new features of Delphi 3 at the Borland Developers
Conference in Nashville. He is also a Borland Certified Delphi Client/Server
Developer. You can contact him at http://www.iinet.com/users/dmiser, or
dmiser@compu-serve.com.
unit CompReg;

interface

procedure Register;

implementation

uses
Classes, ClkLabel;

{$IFDEF WIN32}
{$R *.R32}

{$ELSE}
{$R *.R16}

{$ENDIF}

procedure Register;

begin
RegisterComponents('DMC', [TClickLabel]);

end;

end.

Figure 5: A typical registration unit for a component.

43 August 1997 Delphi Informant

Serving Many Masters
Implementing Many-to-Many Database Relationships

Delphi at Work
Delphi / Database Design

By James Callan
It’s been said that “No man can serve two masters.” And while this may hold
true for people, it need not for data sets. Most practical client/server data-

base applications mandate supporting many-to-many relationships between
tables. Unfortunately, book and manual examples focus on single-table and
master-detail forms, while detail-detail forms are given scarce treatment. This
article aims to correct the oversight by giving many-to-many relationships their
due; it shows you how to recognize the need for many-to-many relationships,
and how to implement them in Delphi.
Real-World Databases
A database is a model of the real world,
adequate for representing interesting facts
about real-world entities. Typically, character-
istics of each entity (person, place, thing, or
concept) and the relationships it has with
other entities are of primary importance. For
example, a company’s payroll system will use
a table containing data about employees.
How else would it know whom to pay?

Similarly, an order-entry system would main-
tain data about orders. This order data likely
would be stored in a master-detail, mated-
table pair. One table contains data about the
order, while the mated table keeps data about
each line of the order. Each order is uniquely
identified by a primary key, e.g. an order
number. Order lines are correspondingly
matched with their related order by having
their primary keys contain the order numbers
to which they relate. This dyad is termed the
standard master-detail relationship, and is
extremely common in real-world systems.

Master-detail tables represent many realistic
situations, but can be inadequate for some
real-world scenarios. Consider a purchasing
system, for instance. Parts are purchased
from suppliers. Each part can be supplied
by multiple suppliers. Equally important is
knowing which parts are supplied by a
specific supplier. Representing this situation
in a master-detail arrangement would fail to
produce the desired results. The classic
master-detail relationship breaks down
between the Parts and Suppliers tables.

This article focuses on recognizing when to
abandon master-detail relationships and use
alternate techniques. We will first introduce a
moderate example, and demonstrate how the
real-world entities are modeled. We’ll then
enhance the model to produce a workable
table design, demonstrate how to build
many-to-many relationship support into your
forms, and conclude with some design tips.
Matchmaker, Matchmaker
Consider the problem of matching people
with tasks for which they are skilled: We have
people; we have skills; we also have tasks. For
our example, we’ll consider people and skills.

Each person can acquire multiple, useful
skills. Likewise, multiple people may possess
the same desirable skill. As in the more com-
plex procurement problem we considered
earlier, the matchmaker problem has a many-
to-many relationship at its core. Two useful
questions this application could answer are:
“What skills has a given person acquired?”

Figure 1: The ERD showing the two essential skills.

Delphi at Work
and, “Which people have acquired a specific skill?”
Ultimately, we’ll build a form that answers both these ques-
tions. First, however, we must design a database.
Figure 2: Resolving the many-to-many relationship with two
many-to-one relationships.
Many-to-Many Modeling
Planning is the first step in building anything worthwhile. In
the database world, a data model is the equivalent of plan-
ning. Data models are comprised of, among other things,
entities and relationships. Since Codd and Date laid the foun-
dations of relational databases nearly thirty years ago, many
modeling techniques have been introduced. Entity-
relationship modeling has stood the test of time.

In an Entity-Relationship Diagram (ERD), entities are repre-
sented by boxes, while relationships are represented by lines
drawn between the boxes. A relationship between two entities
can be one-to-one, many-to-one, one-to-many, or many-to-
many. With a many-to-one relationship between entity A and
entity B, we know that one or more instances of A are related
to a single instance of B. Similarly, with a many-to-many rela-
tionship between entity A and entity B, we know that one or
more As are related to one or more Bs.

Let’s get specific and model our match-making problem. At
first glance, we need two entities. One entity — we’ll call it
PERSON — will represent a person. (By convention, entities
are given singular names.) The other entity — we’ll call it
SKILL — will represent a skill that could be acquired by a
person. In determining how the entities PERSON and SKILL
relate to one another, we must consider both perspectives of
their relationship. We’ll consider these perspectives in the
context of a company that needs to match the right person to
the right task.

Each person in the company can contribute one or more skills.
Similarly, each skill can be one of many contributions that a
person makes to the company. These two basic requirements
result in the Entity-Relationship Diagram illustrated in Figure
1. The figure uses an extended form of standard Information
Engineering notation used for diagramming ERDs.

The end-points of the figure’s relationship line hold special
significance. Each has three prongs and an oval. The three-
pronged symbol, termed a crow’s foot in database circles, indi-
cates one or more instances. The oval indicates whether a
relationship is optional. Formally, the symbols mean that each
person may (due to the “optional” indicator) be related to one
or more skills. Americanized interpretation of the same sym-
bols would conclude that each person is related to zero or
more skills. Both interpretations are equivalent.

Taking the other side, we can conclude that each skill may be
related to one or more persons. Astute readers will notice that
44 August 1997 Delphi Informant
we’ve lost a bit of the richness associated with our original
requirements. Don’t be alarmed. The words above and below
the relationship line are used to give meaning to the relation-
ship. Because there are two perspectives to every relationship,
we need two phrases. By convention, the relationships are
read from top to bottom, and from left to right.

Looking again at Figure 1, we read the ERD as follows: “Each
PERSON may be a value-added contributor via one or more
SKILLS, and each SKILL may be a value contribution for
one or more PEOPLE.” Now this sounds a lot like the origi-
nal requirements. We’ve constructed a model of the matching
problem. Unfortunately, our model has a problem.
Resolving Many-to-Manys
The problem with many-to-many relationships is that, despite
being depicted that way in diagrams, they’re seldom imple-
mented as two tables. Decades of analysis have taught us that
beneath every many-to-many relationship lies a richer seman-
tic relationship begging further study. This additional analysis
often leads to improved models and better applications.

Let’s reconsider the procurement problem. In addition to
knowing merely that a supplier supplies a part, you also want
to know what the supplier charges for the part. You may also
want to keep a history of the supplier’s price changes. You
may even need to deal with two suppliers calling the same
part different names. In the match-making case, we must deal
with the issue of recency, i.e. how current is a person’s skill?
And to what degree has the skill been certified? Likewise, we
may have to contend with the technology-obsolescence jug-
gernaut: Training and skills must be updated constantly.

To address these issues, we’ll need to keep track of facts
such as when a particular skill was acquired, whether the
acquisition involved certification, and who made the certi-
fication. How long a given skill can be deemed “useful”
could also be helpful. Given these additional requirements,
we can conclude that the act of acquiring a skill is itself
interesting. For want of a better term, we’ll call this “act” a
PERSONAL SKILL ACQUISITION. We can then resolve
the many-to-many relationship with two many-to-one rela-
tionships, as shown in Figure 2.

Our expanded model introduces a new type of end-point
for relationship lines. The short bar is also an optionality

Delphi at Work

People.db
Field Name Type Size Key Required Default
EmpID A 10 * Y
FirstName A 20 Y
LastName A 25 Y

Figure 3: Using the Database Desktop, create the People, Skills,
and PerSkill tables.

Skills.db
Field Name Type Size Key Required Default
SkillID A 10 * Y
Descrip A 35 Y
SkillType A 1 Y N
Renewable A 1 Y N
Duration S 9999

PerSkill.db
Field Name Type Size Key Required Default
EmpID A 10 * Y
SkillID A 10 * Y
Acquired D * Y
Certified A 1 Y N
Certification A 10
Details M 128
indicator, but it means “mandatory” rather than “optional.”
The new model in Figure 2 can thus be read: “Each PERSON
may be a contributor via one or more PERSONAL SKILL
ACQUISITIONs, and each PERSONAL SKILL ACQUISI-
TION must be acquired by one and only one PERSON.”

Continuing, it reads: “Each PERSONAL SKILL ACQUISI-
TION must be for one and only one SKILL, and each
SKILL may be acquired through one or more PERSONAL
SKILL ACQUISITIONs.”

This new, resolved ERD contains richer meaning, and
truly captures the essence of our problem. The ERD also
permits us to answer the additional questions posed earli-
er. A more compelling reason to resolve the many-to-many
relationship is to give some semantic significance to what
will ultimately become a “link” or “join” table in our
application. We can now proceed with our table and appli-
cation design.

Although this example application was written using Delphi
2 and makes use of the new DataModule component, it can
be constructed in Delphi 1 without the data module. (It will
work in Delphi 3 without changes.)
Application Overview
The goals of our skill-sets application are to be able to
answer which people have acquired a specific skill, to know
the particulars of their skill acquisition, and to be able to
ascertain all the skills a particular person has acquired.
Another useful feature would be the ability to add, edit, and
delete entries. These basic requirements are sufficient to
demonstrate how to implement many-to-many relationships.

We’ll keep it simple, yet interesting. The People table will
maintain an employee ID, first name, and last name. (By
convention, tables are named in the plural.) The Skills
table will maintain a skill name (SkillID), a description,
the type of skill (Regulated, Unregulated, Normal, etc.),
whether the skill is renewable, and the number of months
that the skill is expected to be considered current
(Duration). These extra details will serve to make the
example more realistic. We’ll keep the intersection-entity
information from the PERSONAL SKILL ACQUISITION
in a join table called PerSkill (also a table-naming conven-
tion). The PerSkill table will contain the employee ID, skill
ID, the date the person acquired the skill (Acquired),
whether the skill was certified (Certified), who did the cer-
tification (Certification), and any notes or details (Details)
about this person’s skill.

To answer the question of what skills Tom, Dick, and Harry
have, we’ll need a form with people in one region, and skill
information in another. To answer the secondary question of
who has a particular skill, we’ll also need a form with skills in
one region, and information about people in another. Both
these questions require information from all three tables.
We’ll structure the tables in a master-detail-detail arrange-
ment using dynamic SQL queries.
45 August 1997 Delphi Informant
To best illustrate some of the techniques for representing
many-to-many relationships in applications, we’ll purposely
limit ourselves to two forms. Therefore, in two forms we
must be able to add, edit, and delete people, skills, and per-
sonal skills. We also need to answer the two burning ques-
tions posed earlier. Although a variety of two-form methods
could accomplish this task, we’ll use a Browser form that per-
mits editing on both the People and Skills tables, and answers
the two questions. The second form will be used to capture
the acquisition of new skills. This arrangement, as noted in
the “Afterthoughts” section, permits generalization to more
complex queries later.
Creating Tables
Using the Database Desktop, create the People, Skills, and
PerSkill tables as depicted in Figure 3. Set the default values
for the SkillType, Renewable, Duration, and Certified fields
as indicated in the figure. To set the default values for a field,
select the field, choose Validity Checks under Table Properties,
and type the default value in Default Value.

Under the Tools menu of the Database Desktop, use the Alias

Manager to create a public alias, named Many2Many, that
points to the directory where you created the tables. We’ll use
this alias later to de-reference the tables we just created.
Rousing the Browser
Figure 4 illustrates the final layout of our completed
Browser form. Using Delphi, begin a new application and
drop a Panel and two GroupBox components, relatively
equal in size, on the default form. Align the Panel to
alBottom and align each of the GroupBoxes to alTop, as
shown in Figure 4. Change the form’s Caption property to
SkillSets Browser. Set its ClientHeight to 400, and its
ClientWidth to 541. Next, set its BorderStyle to bsDialog.
Change the top group box’s Name property to MasterGB,
and change its Caption to &People. Name the bottom

Figure 4: The final layout of the Browser form.

Delphi at Work

Figure 5: Setting the tab order of the objects.

Figure 6: The arrangements of the components for our data module.
group box DetailGB, and make its Caption read &Skills
Acquired By This Person. Set the Height property for
both group boxes to 178.

Remove Panel1’s Caption, and set its BevelOuter property to
bvLowered. Next, position four Button components and a
DBNavigator on the Panel, as illustrated in Figure 4. A Button
width of 60 makes this possible. Name the DBNavigator DBNav,
and set its TabStop property to True. Set the Buttons’ Name and
Caption properties from left to right, as follows: SwapBtn,
S&wap; ZoomBtn, &Zoom; OkBtn, &OK; and CancelBtn, &Cancel.

Next, drop a DBGrid component in each of the group
boxes. Name the top grid MasterGrid, and position it by
setting its Left property to 16, its Top to 21, its Width to
514, and its Height to 145. Similarly, name the lower grid
DetailGrid and set its Left to 69, Top to 20, Width to 390,
and Height to 145. Under the DetailGrid’s Options proper-
ty, set RowSelect to True (more about this later). Right-click
on the form surface (try between the lower group box and
Panel1), and set the tab order to MasterGB, DetailGB, then
Panel1. Right-click on Panel1 and set the tab order as
shown in Figure 5. Finally, set OkBtn’s Default property to
46 August 1997 Delphi Informant
True. Your form should look exactly like Figure 4. Save the
form as Browser, and the application as Mny2Mny.
Data, Data Everywhere
Following an object-oriented approach, we’ll separate our
form from our data with a DataModule component. If you
ever need a many-to-many form similar to Browser for a
production application, you’ll be glad we did this. How
does it go? “Theft is the highest form of reuse.” If you’re fol-
lowing along in Delphi 1, simply lay out the components
on one of the grids, exactly as you always have before.

Within Delphi’s File menu, select New Data Module to create a
new data module for the project. Name the data module
SkillSetsDM. On the data module, drop three DataSource
components, naming them MasterDS, DetailDS, and
Mny2MnyDS. Next, add two Table components, naming them
PeopleTB and SkillsTB. Next, drag over three Query compo-
nents, naming them SkilledPeopleSQL, PersonSkillsSQL,
and Mny2MnySQL. Finally, arrange the components as shown
in Figure 6.

This last step isn’t necessary, but you might find it useful.
Human-factor experiments at Oracle Corp. in the United
Kingdom found that spatial arrangements assist people in
remembering complex ERDs. I suspect the same would
hold true for data modules, if similar experiments were
performed today. Set the MasterDS object’s DataSet
property to PeopleTB. Set the DetailDS object’s DataSet
property to PersonSkillsSQL, and its AutoEdit property
to False. Set the Mny2MnyDS object’s DataSet property to
Mny2MnySQL.

Set PeopleTB ’s DatabaseName to Many2Many. (Remember the
alias we created when we created the tables?) Set its
TableName to People. Note: If you delete the .DB extension
that appears by default in local table names, you’ll find it easi-
er to upsize your application later. Now, double-click the

Delphi at Work
PeopleTB component, and right-click the Field Inspector to
Add New Fields for the People table. Add all three fields.

Similarly, set SkillsTB ’s DatabaseName to Many2Many, and
its TableName to Skills. Use the Field Inspector to add
all the skill fields to the data module as well. Using the
Field Inspector with the Object Inspector (as shown in
Listing Five beginning on page 51) set the SkillsTBDescrip
field’s DisplayLabel to Description of Skill, and its
DisplayWidth to 38. Change SkillsTBSkillType’s
DisplayLabel to Type. Change SkillsTBRenewable and
SkillsTBSkillType’s Alignment property to taCenter. Next,
change SkillsTBSkillID’s DisplayLabel to Skill ID.
Finally, change SkillsTBDuration’s DisplayLabel to
Duration (Months). Save the data module as SkillSet.
Checking Our Perspective
Before we get too far, we probably should make sure we’re on
the right track. Because one of the purposes of the Browser
form is to answer the two questions about people and skills,
we’ll need the capability to change perspectives. What do I
mean by perspective?

Referring back to Figure 2, we find that to answer the ques-
tion “What skills do Tom, Dick, and Harry have?” we need
only consider the data model from the PERSON(’s) perspec-
tive. We begin with a PERSON, and follow the relationship
to the PERSONAL SKILL ACQUISITIONs for the
PERSON. Any additional information we need can be
obtained by following the relationship from the PERSONAL
SKILL ACQUISITION down to the related SKILL.

To answer “Who has this skill?” we switch perspectives,
beginning instead with SKILL. We follow the relationship
from SKILL to the PERSONAL SKILL ACQUISITION for
a particular skill. Again, any additional information can be
obtained by following the relationship from the PERSONAL
SKILL ACQUISITION down to the related PERSON. In
the first case, the PERSON is the driving force; in the sec-
ond, SKILL drives.

Let’s do a partial integration effort, and check to make
sure we can properly swap perspectives. We’ll need a bit of
code, however. To swap between perspectives, we’ll encap-
sulate the code required to establish the field characteris-
tics for the fields that make up the data sets in each view. I
also anticipate that we’ll need a variable to keep track of
which perspective we’re currently viewing. A Boolean flag
will do nicely.

Make the SkillSetsDM the active window, and press @ to
view the code. Add the following declarations:

private
{ Maintains many-to-many viewing perspective. }
ViewingByPeople: Boolean;

public
procedure ByPeople; { To view by People. }
procedure BySkills; { To view by Skills. }

end;
47 August 1997 Delphi Informant
Dynamically Changing Field Properties
When we defined the SkillsTB component, we set up static
field components and provided display properties to control
their captions and width. This can also be done at run time
(again, see Listing Five).

The PeopleTB fields are dynamically altered at run time in the
ByPeople method. This need not be repeated as we do here,
but it is a useful technique for certain types of data-
driven forms. Depending on your application, you could
retrieve your display characteristics from an .INI file.
Grid Resizing
When I first set up the Browser, I realized the size of the
People grid was dramatically smaller than the grid required
for Skills. After swapping, the grid looked off-center and
rather untidy. To correct this problem, I determined some re-
sizing to improve the appearance. The complete source for
the Browser is in Listing Six on page 52. You may need to
play around with the numbers to make it perfect on your sys-
tem. (Resolution-independent, dynamic resizing is a topic for
another article.)

After adding SkillSet to your uses clause, use the Object
Inspector to change MasterGrid ’s DataSource property to
SkillSetsDM.MasterDS. Database components within used
data modules become visible to drop-down lists in the Object
Inspector after the modules are added to your form’s uses
clause. Now, go ahead and set the DataSource for DetailGrid
to SkillSetsDM.DetailDS as well.

To the form’s OnActivate event, add a call to the ViewByPeople
method. Double-click on SwapBtn to add to its OnClick
event handler the following code:

procedure TForm1.SwapBtnClick(Sender: TObject);

begin
if ViewingByPeople then

ViewBySkills

else
ViewByPeople;

end;

The final step for this first integration is to add a Close state-
ment to the OnClick events for OkBtn and CancelBtn.
Compile and run the application.
Testing the Swap
You should see the Employee ID, First Name, and Last Name,
as shown in Figure 7. For now, don’t be concerned about the
bottom grid. Now click the Swap button, or simply press
AW to swap the perspective. You should now be looking at
a view of Skills, as illustrated in Figure 8. Again, other than the
group box’s caption, don’t worry about the lower grid for now.

Referring back to our data model in Figure 2, you’ll find that
we’re toggling the top grid between the two bottom entities
(PERSON and SKILL) in the ERD. If you haven’t played
around with dynamic forms and control re-sizing, this will be a
pretty neat trick.

Figure 9: Using the String list editor to enter the SQL SELECT
statement.

Figure 7: Viewing information by people.

Figure 8: Viewing the data by the skills of each person.

Delphi at Work
Taking Inventory
The first question we’ll attack is “What skills does a particular
person have?” Let’s go back to the SkillSets data module, and
work on our queries. Change the PersonSkillsSQL’s
DatabaseName to Many2Many, and its DataSource to
MasterDS. The DataSource property for a Query component
is used to automatically instantiate any parameters in your
query during the DataSource’s OnDataChange event. It’s pri-
marily used to coordinate master-detail DataSet relationships.

To answer our question, we need to follow the PERSON
entity to the PERSONAL SKILL ACQUISITION, and
from there to the SKILL. Each relationship on the ERD
represents a join clause in our SQL statement. Thus, our
SQL statement will be a three-table, dual-join SELECT.
Next, click on the SQL glyph to raise the String list editor
for the query’s SQL statement, and enter the SQL state-
ment shown in Figure 9.

This SELECT sets up table aliases A, B, and C to assist in
resolving prospective ambiguities between column names.
Using the :EMPID parameter that it gets from the MasterDS
48 August 1997 Delphi Informant
DataSource, the query first selects the appropriate person from
the People table, using EmpID (the primary key for the table).
It then uses the EmpID column to perform a join on the
EmpID column of the PerSkill table (partial primary key) to
locate any records for that person. The last step is to use each
record of the resulting intersection set to join the SkillID col-
umn of the PerSkill table with the Skills table (primary key for
the table). The resulting columns come from both the PerSkill
and Skills tables. The final ORDER BY clause sorts the result-
ing data appropriately.

To verify the query, complete the following steps. Inspect the
Parameters dialog box, and set the EMPID data type to
String. Next, open the People table by setting the PeopleTB ’s
Active property to True. Finally, open the query by setting the
PersonSkillsSQL’s Active property to True. If all is well, you
should see both grids activated on the Browser. To know for
sure, of course, we need data.
Details, Details
To tidy up the lower grid, we need to perform some cosmetic
surgery on the field objects. Double-click the PersonSkillsSQL
component, and add the field objects just as for the tables
earlier. Change PersonSkillsSQLDESCRIP ’s DisplayLabel to
Skill Description, and its DisplayWidth to 40. Set
PersonSkillsSQLSKILLTYPE ’s DisplayLabel to Type and its
Alignment to taCenter. Set PersonSkillsSQLACQUIRED’s
DisplayLabel to Acquired, Alignment to taCenter, and
DisplayWidth to 7. Change PersonSkillsSQLCERTIFIED’s
DisplayLabel to Certified, and its Alignment to taCenter. Set
the Visible property for PersonSkillsSQLEMPID and
PersonSkillsSQLSKILLID to False. The grid should look
slightly small, but much better.

Finding Skilled People
To answer the question “Which people have acquired a particu-
lar skill?” we follow a similar approach as before, but in reverse.
Change the SkilledPeopleSQL’s DatabaseName to Many2Many,
and its DataSource to MasterDS. Enter the SQL statement for
the SkilledPeopleSQL query as shown in Figure 10. You’ll notice

Figure 10: The SkilledPeopleSQL statement.

Delphi at Work
special characters in this query. Rather than select First Name
and Last Name as separate columns, I’ve concatenated them.
This is a useful feature when dealing with names, addresses, and
similar data. Examine the online Help for Local SQL for other
similar features.

SQL junkies will notice the DISTINCT keyword. Because a
person can acquire more than one skill, nothing prevents a per-
son from acquiring the same skill more than once. (This is the
recency issue mentioned earlier.) We have, in fact, planned for
this. The primary keys for the PerSkill table are EmpID, SkillID,
and the date Acquired. Because more than one occurrence of the
same skill is permitted, the same person can be selected in the
SQL statement. The DISTINCT keyword prevents this.

Set the data type for the SKILLID parameter to String, and
perform the following steps to test the query. Change the
DataSet for MasterDS to SkillsTB, and change the DataSet
property for DetailDS to SkilledPeopleSQL. Next, close
the PersonSkillsSQL query.

Finally, open the SkillsTB table and the SkilledPeopleSQL
query. It looks great except for those funky column labels.
Double-click the SkilledPeopleSQL component and add all three
columns. Set SkilledPeopleSQLEMPID’s DisplayLabel to
Employee ID, SkilledPeopleSQLFirstNameLastName’s to
Employee's Full Name, and SkilledPeopleSQLSKILLID’s
Visible property to False. It should look much better now.
Adding People and Skills
We now need to enable editing for people and skills. This will
require some minor changes to the SkillSetsDM methods that
you previously added, and the addition of two event handlers
for the grids in our Browser.

Before we embark on our code changes, go through the
SkillSetsDM and close SkilledPeopleSQL, SkillsTB and
PeopleTB. Set the MasterDS ’s DataSource back to PeopleTB,
and the DetailDS ’s DataSource back to PersonSkillsSQL. We
will be opening the tables and queries on an “as needed” basis.

In the ByPeople and BySkills methods, remove the comments
surrounding the last two lines in each procedure. Next, in the
49 August 1997 Delphi Informant
Browser form, add an OnEnter event handler for MasterGrid,
as follows:

procedure TForm1.MasterGridEnter(Sender: TObject);

begin
DBNav.DataSource := SkillSetsDM.MasterDS;

ZoomBtn.Enabled := False;

end;

Add a similar OnEnter event handler for DetailGrid, as follows:

procedure TForm1.DetailGridEnter(Sender: TObject);

begin
DBNav.DataSource := SkillSetsDM.DetailDS;

ZoomBtn.Enabled := True;

end;

The Zoom button will be used to invoke our second form, to
permit editing of new skill acquisitions. Because it’s good to have
a context for zooming, we’ll permit it only in the lower grid.
Now compile and run the form. Swap the view a couple of times.
While viewing by people, the Browser will appear as in Figure 7.
When viewing by skills, it appears as in Figure 8. Using the navi-
gator, you can add, edit, and delete records in the top grid. Use
the Browser to add the data depicted in Figures 7 and 8.
Editing Across the Join
The final step in our example is to permit editing in the
joined table. You’ll recall that DetailGrid has its RowSelect
property set to True. This property doesn’t permit editing.
Editing three tables linked by a dual join can be a bit tricky.
It can be done, but it requires the new UpdateSQL compo-
nent. What makes it less than trivial in our example is that
we must work around a bug in the BDE interface that doesn’t
like Null fields in link tables. You’ll recognize the bug as spu-
rious statements, triggered by the BDE interface during edits
or deletions, that read, “Beginning of Table” or “End of
Table.” Fear not; there is a workaround.

Add a second form to the project, and remove the form from
the project’s auto-create list using the Project Viewer’s Project
Options dialog box. Lay out the form as shown in Figure 11.
Set the properties for the form’s controls, as shown in the
.DFM file (see Listing Seven beginning on page 52). Save the
form as M2MEdit.

Returning to the SkillSetsDM, set Mny2MnySQL’s
DatabaseName to Many2Many, DataSource to DetailDS, and
RequestLive property to True. Use the String list editor to
enter the following SQL statement:

SELECT EMPID, SKILLID, ACQUIRED, CERTIFIED,

CERTIFICATION, DETAILS

FROM PERSKILL

WHERE EMPID = :EMPID

AND SKILLID = :SKILLID

Set the data types for the EMPID and SKILLID parameters
to String.

Mny2MnySQL’s parameters are filled in automatically from
DetailDS. Since both detail queries that DetailDS toggles

Figure 11: The design of the People Skills Definition form.

Delphi at Work
between contain both EMPID and SKILLID in their result
set, either detail query can be active. Now, switch to code
view to add some data-module code.
Fooling the BDE Interface
Earlier I mentioned a bug in the BDE interface regarding
link-table editing. The bug surfaces only when the link
table is empty or has double Null keys. We’ll add two
methods designed to circumvent the problem. The first,
CheckAutoAdd, determines whether the table is empty, and
if so, automatically places the table into insert mode. The
only reason to zoom on an empty intersection is to add
the first entry, so we save the user a step. We also prevent
the error, and that’s the clever bit.

The second procedure supports adding new records by sup-
plying the side of the key that doesn’t change during addi-
tions. When viewing by people, this will be the employee ID
for the current person. When viewing by skills, it will be the
skill ID for the current skill. These records remain fixed until
the modal dialog box is closed.

After adding a public definition for CheckAutoAdd, add the
OnNewRecord event handler for the Mny2MnySQL DataSet
and the CheckAutoAdd method (again, see Listing Five).
Skillful Zooming
When adding entries to the PerSkill table, half the key will
always be known and static. We need a visual cue to let users
know which half of the key must be selected from a drop-
down list. To this end, we’ll add the FixThePerson and
FixTheSkill methods to the Many2ManyDlg form. Each
method is designed to dynamically alter the form, so as to
properly inform the user.
50 August 1997 Delphi Informant
In addition to adding standard modal dialog-box close func-
tionality to the OK and Cancel buttons, we’ll also need an
activator for CheckAutoAdd, and a clean-up routine to close
the query when we close the form. The form’s OnActivate and
OnClose events work well. We must also remember to add the
SkillSet file to M2MEdit’s uses clause. The source code for
this is shown in Listing Eight on page 54.

The last step is to create the Many2Many dialog box, activate
the query, fix up the dialog box for editing, make the edits, and
refresh the lower grid after returning. Listing Eight contains the
OnClick event handler that must be added to the Browser’s
ZoomBtn to accomplish these items. Add the M2MEdit file to
the Browser’s uses clause. (Purists may want to move the query
activation inside the Many2Many dialog box.)

After making the code additions, run the form. Both the key-
board and mouse can be used to run the application. The
AP key combination navigates to the upper grid, As
moves to the lower, Aw swaps the View, and the AZ
zooms. Using F and R, users can add and edit data
or leave the form.
Dynamic Duo
This article has demonstrated various ways in which
DataSources can dynamically operate with DataSets to
achieve a practical way of implementing many-to-many rela-
tionships within Delphi client/server applications. Multiple
masters can be served. Hopefully, you’ve seen an idea or two
that can help you when you next encounter this pattern.
Helpful Resources
The need to properly model complex applications cannot
be over-stressed. Although we’ve touched briefly on Entity-
Relationship Modeling, full coverage of this subject is
beyond the scope of this article. For a complete coverage of
Entity-Relationship Modeling, see the book CASE*Method
Entity-Relationship Modeling by Richard Barker [Addison-
Wesley, 1990], or The Data Modeling Handbook by Michael
C. Reingruber and William W. Gregory [John Wiley &
Sons, Inc., 1994]. For an excellent treatment of design pat-
terns, consult Design Patterns for Object-Oriented Software
Development by Wolfgang Pree [Addison-Wesley, 1995].

The start-up delay in opening the initial tables for this pro-
gram is an example of processing delays that often pervade
database applications. You may want to consider changing the
mouse cursor to keep your users patient.
Afterthoughts
We developers are seldom lucky enough to find an article that
addresses precisely what we need when we need it. If you’re
working with an application that requires dynamic SQL or
joins between tables, and you’re using auto-increment prima-
ry keys, you’re possibly experiencing some problems.

Delphi’s database-field objects use OLE variants to store their
data, and the auto-increment data type is not directly com-
patible with an integer data type. In such situations, simply

Delphi at Work
setting the MasterSource property to a DataSource will cause a
variant-conversion exception. The workaround to this is to
add code to instantiate your SQL query’s parameters from the
master DataSet’s fields directly within the master DataSet’s
OnDataChange event handler.

Relegating the join table edits to a separate dialog box per-
mits you great freedom in how you organize your application.
Making the dialog box separate supports placing it in a DLL,
and calling it from multiple locations within your applica-
tion. It also provides a user-initiated action by which what I
term “second-stage” queries can be activated. There is no
point is tying up resources needlessly.

Although the example in this article mixed Table objects and
Query objects, the entire project can be built exclusively
using Query objects. This is important when considering
upsizing your application. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\AUG\DI9708JC.

James Callan, formerly a consulting director with Oracle Corp., is
currently president of Gordian Solutions, Inc., an information-technology
consulting provider in Cary, NC. Jim’s latest book on client/server excellence,
Collaborative Computing with Delphi 3 (Wordware, 1997), is currently avail-
able in bookstores. He can be reached at (919) 460-0555, or by e-mail at
102533.2247@compuserve.com.
Begin Listing Five — SkillSet.pas
unit SkillSet;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, DBTables, DB;

type
TSkillSetsDM = class(TDataModule)

MasterDS: TDataSource;

DetailDS: TDataSource;

Mny2MnyDS: TDataSource;

PeopleTB: TTable;

SkillsTB: TTable;

SkilledPeopleSQL: TQuery;

PersonSkillsSQL: TQuery;

Mny2MnySQL: TQuery;

PeopleTBEmpID: TStringField;

PeopleTBFirstName: TStringField;

PeopleTBLastName: TStringField;

SkillsTBSkillID: TStringField;

SkillsTBDescrip: TStringField;

SkillsTBSkillType: TStringField;

SkillsTBRenewable: TStringField;

SkillsTBDuration: TSmallintField;

PersonSkillsSQLDESCRIP: TStringField;

PersonSkillsSQLSKILLTYPE: TStringField;

PersonSkillsSQLACQUIRED: TDateField;

PersonSkillsSQLCERTIFIED: TStringField;

PersonSkillsSQLEMPID: TStringField;

PersonSkillsSQLSKILLID: TStringField;
51 August 1997 Delphi Informant
SkilledPeopleSQLEMPID: TStringField;

SkilledPeopleSQLFIRSTNAMELASTNAME: TStringField;

SkilledPeopleSQLSKILLID: TStringField;

procedure Mny2MnySQLNewRecord(DataSet: TDataSet);

private
ViewingByPeople: Boolean;

{ Maintains Many-to-many viewing perspective. }
public

procedure ByPeople; { To view by People. }
procedure BySkills; { To view by Skills. }
procedure CheckAutoAdd; { Join table BDE workaround. }

end;

var
SkillSetsDM: TSkillSetsDM;

implementation

{$R *.DFM}

procedure TSkillSetsDM.ByPeople;

begin
SkilledPeopleSQL.Close;

ViewingByPeople := True; { Set view indicator. }
MasterDS.DataSet := PeopleTB;

with PeopleTB do begin
if not Active then

Open;

FieldByName('EmpID').DisplayLabel := 'Employee ID';

FieldByName('FirstName').DisplayLabel := 'First Name';

FieldByName('FirstName').DisplayWidth := 30;

FieldByName('LastName').DisplayLabel := 'Last Name';

FieldByName('LastName').DisplayWidth := 30;

end;
DetailDS.DataSet := PersonSkillsSQL;

PersonSkillsSQL.Open;

end;

procedure TSkillSetsDM.BySkills;

begin
PersonSkillsSQL.Close;

ViewingByPeople := False; { Reset view indicator. }
MasterDS.DataSet := SkillsTB;

if not SkillsTB.Active then
SkillsTB.Open;

DetailDS.DataSet := SkilledPeopleSQL;

SkilledPeopleSQL.Open;

end;

procedure TSkillSetsDM.CheckAutoAdd;

begin
with Mny2MnySQL do begin

if not Active then
Open;

if BOF and EOF then
begin

Edit;

Insert;

end;
end;

end;

procedure TSkillSetsDM.Mny2MnySQLNewRecord(

DataSet: TDataSet);

begin
with Mny2MnySQL do

if ViewingByPeople then
FieldByName('EMPID').AsString :=

PeopleTB.FieldByName('EMPID').AsString

else
FieldByName('SKILLID').AsString :=

SkillsTB.FieldByName('SKILLID').AsString;

end;

end.

End Listing Five

Delphi at Work
Begin Listing Six — Browser.pas
unit Browser;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,

Controls, Forms, Dialogs, Grids, DBGrids, DBCtrls,

StdCtrls, ExtCtrls;

type
TForm1 = class(TForm)

Panel1: TPanel;

MasterGB: TGroupBox;

DetailGB: TGroupBox;

SwapBtn: TButton;

ZoomBtn: TButton;

OkBtn: TButton;

CancelBtn: TButton;

DBNav: TDBNavigator;

MasterGrid: TDBGrid;

DetailGrid: TDBGrid;

procedure FormActivate(Sender: TObject);

procedure SwapBtnClick(Sender: TObject);

procedure OkBtnClick(Sender: TObject);

procedure CancelBtnClick(Sender: TObject);

procedure MasterGridEnter(Sender: TObject);

procedure DetailGridEnter(Sender: TObject);

procedure ZoomBtnClick(Sender: TObject);

private
ViewingByPeople: Boolean;

procedure ViewByPeople;

procedure ViewBySkills;

public
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses SkillSet, M2MEdit;

procedure TForm1.ViewByPeople;

begin
SkillSetsDM.ByPeople; { Set up data sources. }
ViewingByPeople := True;

MasterGrid.Width := 468;

MasterGrid.Left := 33;

MasterGB.Caption := '&People On The Fast Track';

DetailGB.Caption := 'Skills &Acquired By This Person';

DetailGrid.Width := 397;

end;

procedure TForm1.ViewBySkills;

begin
SkillSetsDM.BySkills; { Set up data sources. }
ViewingByPeople := False;

MasterGrid.Width := 509;

MasterGrid.Left := 16;

MasterGB.Caption := '&Skills To Watch For';

DetailGB.Caption :=

'People Who Have &Acquired This Skill';

DetailGrid.Width := 378;

end;

procedure TForm1.FormActivate(Sender: TObject);

begin
ViewByPeople;

end;

procedure TForm1.SwapBtnClick(Sender: TObject);

begin
if ViewingByPeople then

ViewBySkills

else
52 August 1997 Delphi Informant
ViewByPeople;

end;

procedure TForm1.OkBtnClick(Sender: TObject);

begin
Close;

end;

procedure TForm1.CancelBtnClick(Sender: TObject);

begin
Close;

end;

procedure TForm1.MasterGridEnter(Sender: TObject);

begin
DBNav.DataSource := SkillSetsDM.MasterDS;

ZoomBtn.Enabled := False;

end;

procedure TForm1.DetailGridEnter(Sender: TObject);

begin
DBNav.DataSource := SkillSetsDM.DetailDS;

ZoomBtn.Enabled := True;

end;

procedure TForm1.ZoomBtnClick(Sender: TObject);

begin
Many2ManyDlg := TMany2ManyDlg.Create(Application);

SkillSetsDM.Mny2MnySQL.Open;

with Many2ManyDlg do begin
if ViewingByPeople then { Show the dialog box. }

FixThePerson

else
FixTheSkill;

ShowModal;

Free;

end;

if ViewingByPeople then { Refresh the view. }
ViewByPeople

else
ViewBySkills;

end;

end.

End Listing Six
Begin Listing Seven — M2MEdit.dfm
object Many2ManyDlg: TMany2ManyDlg

Left = 290

Top = 235

BorderStyle = bsDialog

Caption = 'People Skills Definition'

ClientHeight = 330

ClientWidth = 324

Font.Color = clWindowText

Font.Height = -11

Font.Name = 'MS Sans Serif'

Font.Style = []

OnActivate = FormActivate

OnClose = FormClose

PixelsPerInch = 96

TextHeight = 13

object Label1: TLabel

Left = 8

Top = 3

Width = 63

Height = 13

Caption = '&Employee ID:'

FocusControl = EmpIDLKUFld

end
object Label2: TLabel

Left = 128

Top = 3

Width = 53

Height = 13

Caption = 'First Name:'

Delphi at Work
end
object Label3: TLabel

Left = 220

Top = 3

Width = 54

Height = 13

Caption = 'Last Name:'

end
object Label4: TLabel

Left = 8

Top = 58

Width = 78

Height = 13

Caption = '&Skill Description:'

FocusControl = SkillLKUFld

end
object Label5: TLabel

Left = 8

Top = 113

Width = 45

Height = 13

Caption = '&Acquired:'

FocusControl = AcquiredFld

end
object Label6: TLabel

Left = 191

Top = 113

Width = 73

Height = 13

Caption = 'Certification &By:'

FocusControl = CertificationFld

end
object Label7: TLabel

Left = 8

Top = 165

Width = 35

Height = 13

Caption = '&Details:'

FocusControl = DetailsMEMO

end
object DBEdit1: TDBEdit

Left = 128

Top = 19

Width = 89

Height = 21

TabStop = False

Color = clBtnFace

DataField = 'FirstName'

DataSource = DataSource1

MaxLength = 20

TabOrder = 1

end
object EmpIDLKUFld: TDBLookupComboBox

Left = 8

Top = 19

Width = 93

Height = 21

DataField = 'EMPID'

DataSource = SkillSetsDM.Mny2MnyDS

DropDownRows = 9

DropDownWidth = 300

KeyField = 'EmpID'

ListField = 'EmpID;FirstName;LastName'

ListSource = DataSource1

TabOrder = 0

end
object DBEdit2: TDBEdit

Left = 216

Top = 19

Width = 97

Height = 21

TabStop = False

Color = clBtnFace

DataField = 'LastName'

DataSource = DataSource1

MaxLength = 25

TabOrder = 2

end
object SkillLKUFld: TDBLookupComboBox

Left = 8

Top = 74
53 August 1997 Delphi Informant
Width = 305

Height = 21

DataField = 'SKILLID'

DataSource = SkillSetsDM.Mny2MnyDS

KeyField = 'SkillID'

ListField = 'Descrip'

ListSource = DataSource2

TabOrder = 3

end
object AcquiredFld: TDBEdit

Left = 8

Top = 128

Width = 65

Height = 21

DataField = 'ACQUIRED'

DataSource = SkillSetsDM.Mny2MnyDS

MaxLength = 0

TabOrder = 4

end
object CertifiedCB: TDBCheckBox

Left = 107

Top = 132

Width = 73

Height = 17

Caption = 'Certified'

DataField = 'CERTIFIED'

DataSource = SkillSetsDM.Mny2MnyDS

TabOrder = 5

ValueChecked = 'Y'

ValueUnchecked = 'N'

end
object CertificationFld: TDBEdit

Left = 190

Top = 130

Width = 121

Height = 21

DataField = 'CERTIFICATION'

DataSource = SkillSetsDM.Mny2MnyDS

MaxLength = 10

TabOrder = 6

end
object DetailsMEMO: TDBMemo

Left = 8

Top = 180

Width = 305

Height = 65

DataField = 'DETAILS'

DataSource = SkillSetsDM.Mny2MnyDS

TabOrder = 7

end
object OkBtn: TButton

Left = 156

Top = 301

Width = 75

Height = 25

Caption = '&Ok'

Default = True

TabOrder = 9

OnClick = OkBtnClick

end
object CancelBtn: TButton

Left = 240

Top = 301

Width = 75

Height = 25

Caption = 'Cancel'

TabOrder = 10

OnClick = CancelBtnClick

end
object DBNavigator1: TDBNavigator

Left = 64

Top = 252

Width = 200

Height = 25

DataSource = SkillSetsDM.Mny2MnyDS

TabOrder = 8

TabStop = True

end
object DataSource1: TDataSource

AutoEdit = False

Delphi at Work
DataSet = Table1

Left = 96

Top = 42

end
object Table1: TTable

Active = True

DatabaseName = 'Many2Many'

ReadOnly = True

TableName = 'PEOPLE'

Left = 124

Top = 42

end
object DataSource2: TDataSource

AutoEdit = False

DataSet = Table2

Left = 256

Top = 152

end
object Table2: TTable

Active = True

DatabaseName = 'Many2Many'

ReadOnly = True

TableName = 'SKILLS'

Left = 284

Top = 152

end
end

End Listing Seven
5

Begin Listing Eight — M2MEdit.pas
unit M2MEdit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,

Controls, Forms, Dialogs, Grids, DBGrids, DB, DBTables,

StdCtrls, DBCtrls, ExtCtrls, Mask;

type
TMany2ManyDlg = class(TForm)

DBEdit1: TDBEdit;

EmpIDLKUFld: TDBLookupComboBox;

DataSource1: TDataSource;

Table1: TTable;

DBEdit2: TDBEdit;

SkillLKUFld: TDBLookupComboBox;

DataSource2: TDataSource;

Table2: TTable;

AcquiredFld: TDBEdit;

CertifiedCB: TDBCheckBox;

CertificationFld: TDBEdit;

DetailsMEMO: TDBMemo;

Label1: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: TLabel;

OkBtn: TButton;

CancelBtn: TButton;

DBNavigator1: TDBNavigator;

procedure OkBtnClick(Sender: TObject);

procedure CancelBtnClick(Sender: TObject);

procedure FormActivate(Sender: TObject);

procedure FormClose(Sender: TObject;

var Action: TCloseAction);

private
public

procedure FixThePerson;

procedure FixTheSkill;

end;

var
Many2ManyDlg: TMany2ManyDlg;
4 August 1997 Delphi Informant
implementation

{$R *.DFM}

uses SkillSet;

procedure TMany2ManyDlg.FixThePerson;

begin
EmpIDLKUFld.Enabled := False;

SkillLKUFld.Enabled := True;

EmpIDLKUFld.Color := clBtnFace;

SkillLKUFld.Color := clWindow;

end;

procedure TMany2ManyDlg.FixTheSkill;

begin
SkillLKUFld.Enabled := False;

EmpIDLKUFld.Enabled := True;

EmpIDLKUFld.Color := clWindow;

SkillLKUFld.Color := clBtnFace;

end;

procedure TMany2ManyDlg.OkBtnClick(Sender: TObject);

begin
ModalResult := mrOK;

end;

procedure TMany2ManyDlg.CancelBtnClick(Sender: TObject);

begin
ModalResult := mrCancel;

end;

procedure TMany2ManyDlg.FormActivate(Sender: TObject);

begin
SkillSetsDM.CheckAutoAdd;

end;

procedure TMany2ManyDlg.FormClose(Sender: TObject;

var Action: TCloseAction);

begin
SkillSetsDM.Mny2MnySQL.Close;

end;

end.

End Listing Eight

55 August 1997 Delphi Informant

AppVision’s GenerationXpert
Getting in Touch with Expert Automation

New & Used

By Alan C. Moore, Ph.D.
Delphi’s environment is customizable and extendible; we can change its
look and behavior in many ways. From the Code Editor to the tool bar, we

can install individual new components or entire libraries. Among the more
important tools in Delphi’s arsenal are its experts (or Wizards as they’re called
in Delphi 3), which free us from hours of code-writing drudgery.
While we’re all familiar with their capabili-
ties, how many of us have considered
writing experts? While Borland provides a
Component Writer’s Guide and online Help,
no such detailed information exists to help
us write experts. Information is available in
a few sample programs (in Delphi’s
\demos\experts directory), and in the expert
interface itself, DsgnIntf.pas (in the doc
director.). Also, books such as Ray
Lischner’s Secrets of Delphi 2 [Waite Group
Press, 1996] and Hidden Paths of Delphi 3
[Informant Press, 1997] have begun to fill
the gap. But for the programmer in need of
a quicker solution, this still may not suffice.

Enter GenerationXpert. With the intro-
duction of AppVision’s GenerationXpert,
all of this is about to change. This very
special Delphi expert enables us to create
experts of our own. It’s available in 16- and
32-bit versions, and in two distinct flavors:
a DLL that runs in the Delphi environ-
ment (like most experts), and a stand-alone
.EXE. Their interfaces are identical: Each
is a multi-page notebook that allows you to
define all the basic elements of your expert.
A Guided Tour
As experts go, GenerationXpert is fairly
involved, consisting of nine or ten dialog
pages, depending on the internal choices you
make. On the first page, you choose whether
to create a new expert, or modify one you cre-
ated earlier. On the second page, you choose
the expert’s type and style. On the third page,
you provide a filename, class name, expert
name, and description for your expert.

The appearance of the next page depends on
the type of expert you choose. For example,
if you choose a standard expert, you’re asked
to provide the text that Delphi will include
under the Help menu. On the other hand, if
you choose a form or a project expert, then
you’re asked for a bitmap to represent your
new expert in the Object Repository.

Then, regardless of the type, you can choose a
modal or a modeless dialog box. And in the

Figure 3: The Button Glyphs page allows you to assign bitmaps
to your expert’s buttons.

Figure 4: The Units & Components page reveals some unex-
pected surprises.

Figure 1: GenerationXpert lets you choose to have a standard
expert load along with Delphi.

Figure 2: The Metaphor page lets you choose navigation but-
tons, and specify the number of pages.

New & Used
case of a standard expert, you can choose to have it loaded
along with Delphi (see Figure 1). Then you must provide
names for the expert’s entry function (and exit function, if
modeless), form, and unit.

On the next page, as mentioned, you can choose to have
GenerationXpert create a .DLL file (the usual type of
expert), and optionally, a stand-alone .EXE file. On the same
page, you can choose to install the expert in Delphi by hav-
ing the program make an appropriate entry in Delphi.ini.

Next is Miscellaneous Options, which contains seven
tabbed pages:

The Display page allows you to set your expert’s border
style, border icons, form caption, and alignment.
The Metaphor page (see Figure 2) lets you set the
number of pages your expert will have, and how
they’ll be navigated.
The Navigation page provides additional navigation
options.
The Button Glyphs page (see Figure 3) allows you to
select the bitmaps for the three navigational buttons
(Next, Prev, and Finish).
The Units & Components page (see Figure 4)
provides some delightful and unexpected options.
You can add one or more commonly needed units
(PRINTERS, MMSYSTEM, INIFILES, and
FILECTRL), any of four common dialog boxes
(OpenFile, SaveFile, Print, and Printer Setup), and
the TBatchMove and/or TReport components.
56 August 1997 Delphi Informant
The Tables page allows you to choose among the data-
base engines on your system, create a list of tables,
then edit them.
The final subpage allows you to create connections to
one of AppVision’s other products, a Delphi project
manager called Pumpkin. If you click Finish on any
other page, you’ll end up here. Just two things are left
to do: Save the expert definition (in a .GXD file), and
generate the code for the expert. Both these tasks are
accomplished on this page.
Strengths and Weaknesses
A good deal of thought went into GenerationXpert’s structure
and internal logic. You can’t move on to the next page until
you’ve entered data in the crucial fields. The program keeps
track of your choices, and presents you with appropriate
follow-up pages; for example, only if you choose a project or
a form expert will you be asked to create/choose a bitmap
representation. Why? Because these, unlike a standard expert,
are available within the Project and Form galleries, respectively.

The product does what it promises, and this is certainly a major
strength. Another obvious strength is that GenerationXpert is
the first comprehensive expert-generating tool for Delphi. All
the weaknesses I’ll mention are ones you would expect in a first-
generation tool that has yet to be significantly modified.

The most serious shortcoming is the lack of any printed man-
ual or tutorial. Because expert-writing is new for most devel-
opers, this is a real problem. Another problem is that you

New & Used
can’t import previously-designed form units into your expert. In other words, you’ll have to
do all the form-design work after you’ve generated the expert skeleton. (According to the
application’s author, form addition is among the top priorities for future versions.)

Sometimes a particular feature suggests both strengths and weaknesses. Unfortunately, it offers
no way to add additional components or units beyond the pre-defined choices. Nevertheless,
GenerationXpert does what any good expert should: It lets you make the decisions, then does
the grunt work. Imagine coding all the decisions I described previously!
Who Needs It?
One likely market for GenerationXpert would be programmers who do a great deal of custom
work, and find themselves repeatedly starting with the same form template and applying similar,
but slightly different, design steps with each new application. The process could be automated
by writing a form expert that requested the variable information, then generated a custom form.

Another possibility is for those who need a small, specific tool (an expert) to generate a series
of related components. Of course, something like this could easily be done with one of the
component-creation tools now available. However, if we know specifically what changes to
make to a series of base components, and if those changes remain consistent from one component
to the next, we may actually do better to create a simple expert, to really automate the process.

I’m sure you can think of many more uses. If you want to learn more about Delphi experts or
write some of your own, you should definitely consider this product. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in music composition and music theory. He has
been developing education-related applications with the Borland languages for more than 10 years. He has published a num-
ber of articles in various technical journals. Using Delphi, he specializes in writing custom components and implementing mul-
timedia capabilities in applications, particularly sound and music. You can reach Alan on the Internet at acmdoc@aol.com.
57 August 1997 Delphi Informant
GenerationXpert is a Delphi expert
that generates the skeletal code for
standard, form, and project experts.
It can generate modal or modeless
experts that integrate into Delphi
as DLLs, or as stand-alone .EXE
files. While it provides the means
to create a multi-page dialog form,
it can’t import existing forms. It
produces a definition file (.GXD)
that can be modified later, and a
unit file (.PAS) that can be com-
piled. GenerationXpert is definitely
worth the attention of developers
who need to create experts
(Wizards).

AAppppVViissiioonn SSooffttwwaarree
171 Belvedere Ave.
San Carlos, CA 94070
PPhhoonnee:: (415) 631-8913
FFaaxx:: (415) 631-8914
EE--MMaaiill:: sales@appvision.com
WWeebb SSiittee:: http://www.-
appvision.com
PPrriiccee:: US$89 (32-bit upgrade is
free.)

5

“Delphi Component Design”
continued on page59

“Building Internet Applicaions with Delphi 2”
continued on page 59

Text File
Delphi Component Design

Even before I saw the first
mention of Delphi Component
Design by Danny Thorpe — a
glowing endorsement by Jerry
Coffey, Editor-in-Chief, in the
February 1997 DI — there
was a buzz of excitement
about it on the COBB Delphi
discussion group which I help
moderate. As a long-time
member of Borland’s Research
and Development team
(Pascal and now Delphi) who
has contributed his technical
expertise to a number of
Delphi publications, Danny
Thorpe is widely known
among Delphi developers. So
there was much excitement
and anticipation about his
new book. Such excitement
among advanced programmers
seemed remarkable; developers
in this category are highly
selective, and tend not to buy
many Delphi books.

Any book about writing
Delphi components is going
to include a significant num-
ber of new custom compo-
nents demonstrating various
techniques of component
design, right? Wrong! While
Component Design contains
excellent code examples and
an interesting utility or two,
the goal is not to fill your
8 August 1997 Delphi Informant
Component palette with a
plethora of new custom com-
ponents. Rather, it is to help
you acquire the knowledge
needed to create complex
components and to work sub-
tle magic in the Delphi envi-
ronment. So don’t expect to
find a flashy new progress bar,
a floating tool box, or an
enhanced panel to house com-
pound components. What
you will find includes a
detailed discussion of Delphi’s
component streaming process,
its message system, the proper
(and improper) use of excep-
tions, and how to take advan-
tage of Run-Time Type
Information. And that’s just
skimming the surface.

Component Design begins
with a concise but insightful
history of the development of
Delphi, tracing its roots to
Borland’s Turbo Pascal. After
describing the two types of
Delphi programmers — the
application developer and the
component creator — Thorpe
provides an excellent overview
of the component design
process, including the various
privacy levels, the basic classes
on which components and
their support classes are built,
and the extensibility/function-
ality dichotomy.

Many questions face the
component architect: When is
it better to declare a method
dynamic instead of virtual?
What is metadata and how
can it be used to control the
behavior of components?
When and how should we use
the TReader and/or TWriter
methods? What are the best
ways to optimize a compo-
Building Internet Applications with Delphi 2

Internet connectivity educates
the reader on the protocols
and addressing standards that
are the basis for the existence
of the Internet. The TCP/IP,
IP addressing, and Domain
Name Service segments are
useful to those who need a
broad perspective on the top-
ics. The presentation is well
balanced; each segment con-
tains a brief introductory
paragraph, followed by a more
technical discussion.

Critical to the success of any
Windows Internet develop-
ment endeavor is a thorough
understanding of the
Windows Sockets (WinSock)
API. The presentation in this
book is not exhaustive, but it
provides the foundation need-
ed to understand the remain-
der of the projects in the
book. Each of the steps
required for an Internet con-
nection through a Windows
socket is explained using
example calls written in
Object Pascal. Readers may
find it helpful to supplement
the book by viewing the
Winsock.PAS header file (to
see where the code fits into
the overall picture). The
WinSock chapter concludes
by providing the snippets to
encapsulate the WinSock
object with a wrapper.
The project in the WinSock

chapter provides a good exam-
ple of what to expect from the
rest of the book’s projects.
Readers will quickly learn
they’ll need to load the code
examples from the accompa-
nying CD to build the pro-
jects. (Heed the instructions
Building Internet Applications
with Delphi 2 by Davis
Chapman, et al. is a text that
should find its way onto the
shelves of any programmer
interested in creating software
with Internet connectivity,
regardless of language. From
the fundamentals of Internet
data transport to the intrica-
cies of the Netscape API, this
book packs in nearly every
detail required by a program-
mer delving into development
for the world-wide network.

Using Delphi as the demon-
stration tool, Building empha-
sizes the detailed presentation
of the structures and protocols
of the Internet. To lay a sound
foundation for the reader,
Chapman provides a good
summary of the items com-
prising a complete Internet
tool suite. The opening chap-
ters introduce FTP, e-mail,
Usenet News, and other
World Wide Web tools; each
is given a more thorough
treatment in later chapters. A
well written chapter on

Text File
nent? (And when is it a waste
of time to code in assembler?)
These and many other impor-
tant questions are answered in
the middle section of Compo-
nent Design, which is devoted
to the implementation details
of writing a component. To-
ward the beginning of this sec-
tion, Thorpe discusses the var-
ious helper classes — TList,
TCollection, TStrings, etc. —
that perform many of the
behind-the-scenes tasks of
components. What seems to
be missing is a complete exam-
ple of using such classes in
building a new component.
While he provides some useful
tips for building new compo-
nents with TCollection
and its supporting class
TCollectionItem, Thorpe

Delphi Component Design
59 August 1997 Delphi Informant

Building Internet Applica
missed a great opportunity
by not providing a specific
example of using this helper
class in building a new com-
ponent.
Thorpe provides an interest-

ing discussion of advanced
graphics techniques in a chap-
ter on Visual Component
Library subsystems. He makes
a strong case for using the
Fractal Image File format
instead of the better-known
JPEG, GIF, or TIFF formats.
He introduces a TFIFImage
graphics class to provide sup-
port for this format, and
includes a sample application
and a related utility on the
accompanying CD-ROM.

Delphi provides many tools
to help us design and imple-
ment custom components,

 (cont.)
tions with Delphi 2 (cont.)
including the new Open Tools
Application Programming
Interface in Delphi 2, Property
Editors, and Component
Editors. These tools are dis-
cussed in-depth in the con-
cluding chapters, along with a
brief look at Delphi Experts.
There is also a chapter on
optimization techniques that
includes an excellent discus-
sion of memory management.
Here Thorpe’s masterful
understanding of Delphi’s
compiler really shines. This
chapter, as well as others, will
be of interest to any serious
Delphi developer.

Delphi Component Design is
definitely not an appropriate
book for new Delphi develop-
ers. However, if you have
experience writing compo-
nents and want to explore
more advanced aspects, this
book will interest you. And
despite what its title might
infer, Delphi Component
Design has much to offer any
advanced Delphi programmer,
whether component creator or
application developer.

— Alan C. Moore, Ph.D.

Delphi Component Design by
Danny Thorpe, Addison-
Wesley Developers Press, One
Jacob Way, Reading, MA
01867-3999, (800) 447-2226,
http://www.aw.com/devpress.

ISBN: 0-201-46136-6
Price: US$36.95
(348 pages, CD-ROM)
regarding the read-only attrib-
utes while installing the code,
or you’ll waste a lot of time.)
All code is provided in 16-
and 32-bit versions, for either
Delphi 1 or 2, and compiles
easily. Although the example
in Chapter 6 calls a DLL, the
remaining examples in the
book use Delphi exclusively.
Preferring to work from com-
plete code listings, I found the
Pascal snippets difficult to
place in context; it was helpful
to load the project into
Delphi.
The core of Building exam-

ines the development of indi-
vidual Internet tools. Begin-
ning with the development of
an FTP Client and Server, the
detailed entries also include
SMTP and POP Mail
Clients, an Internet News
Client/Reader, and an associ-
ated UUEncoder/Decoder.
The presentation is well bal-
anced. The communications
transaction being discussed is
explained point by point. The
Delphi procedure required to
implement this data exchange
or process accompanies the
text.

The World Wide Web and
its protocols and tools are
examined in the third sec-
tion of Building. The chap-
ters that examine CGI and
the Netscape API present
exciting possibilities for
Delphi programmers who
may not have considered the
tool’s applicability for devel-
oping these applications.

The final section of
Building is devoted to use-
ful appendices. Commands
and response codes — the
currency of the Internet —
are detailed for each tool in
the Internet suite. Message
formats are also provided
for the e-mail and HTTP
datagrams. A chapter is set
aside to discuss RFC
(Request for Comment)
Standards Documents. The
CD contains the full text of
many of these documents,
and also includes FYI and
FAQ documents.

Filling out the appendix sec-
tion is a chapter on C/C++
conversion to Object Pascal
that provides a chart-based
reference to the process. This
subject could fill more than
the 10 pages allotted, and
should be considered only an
indicator of the possibilities.

As mentioned, the accom-
panying CD is useful
beyond the project code it
provides. Shareware and
freeware tools for accessing
the Internet and World
Wide Web are also included.
A nice addition is the Web
pages supporting the share-
ware (listed in a separate
directory). This saves time
by bypassing the network in
favor of the stored pages.

Building is valuable on two
levels: It’s a solid reference
and teaching tool for pro-
grammers in any language
who find themselves in need
of technical information
about the Internet, its proto-
cols, and standards; and for
Delphi programmers, it pro-
vides an excellent selection
of learning opportunities for
their selected tool in devel-
oping Internet applications.
The material is exclusively
aimed at advanced program-
mers; nothing is provided
about the basics of Object
Pascal and Delphi. Building
Internet Applications with
Delphi 2 is for a specialized
group of programmers, but,
with the increasing impor-
tance of Internet connectivi-
ty in the commercial soft-
ware market, this audience
should see a continued
expansion. Having this
information in your toolbox
may make the difference
when bidding on your next
project.

— Warren Rachele

Building Internet
Applications with Delphi 2
by Davis Chapman, et al.
QUE Corp., 201 W. 103
Street, Indianapolis, IN
46290, (800) 858-7674.

ISBN: 0-7897-0732-2
Price: US$49.99
(624 pages, CD-ROM)

File | New
Directions / Commentary
The All-Wagner Team

The component-based architecture of Delphi and other development tools has radically
altered the way developers build applications. While the business logic specific to an applica-

tion must still be created internally, savvy developers are leveraging the vast array of commer-
cial, shareware, and freeware third-party VCL components.
If you’ve looked on the Web, you’ve
undoubtedly noticed that locating
shareware and freeware components isn’t
difficult. Finding quality components
within this pool, however, may not
always be such a simple task. While you
can feel assured using shrink-wrapped
packages like InfoPower or Raize
Components, you must sort through a
slew of shareware and freeware compo-
nents to find useful and reliable ones.
Nonetheless, quality components are
out there, and I’m highlighting them
this month.

In trying to select specific components
to cover, I limited my attention to one
category that deserved special attention:
freeware components that include full
source code. Not only is their price right
for developers, but their source code can
be a great learning tool. Besides, the
authors deserve recognition for spending
time and energy to provide free, fully
functional components and source code
for the developer community.

Just as John Madden picks only football
players he’s seen play for his All-
Madden Team, I’m selecting only com-
ponents I’ve worked with, i.e. it’s likely
there are many worthy of being recom-
mended that I haven’t used. Disclaimers
aside, here are the winners:
Best Look Award: TExplorerButton.
The user-interface enhancements by
Microsoft first seen in Internet Explorer
(IE) 3.0 produced a flurry of activity by
Delphi developers to emulate this look
and feel. Fabrice Deville’s TExplorerButton
stands out from the others I tried in this
category. While Delphi 3 allows you to
60 August 1997 Delphi Informant
work with Explorer-style buttons,
TExplorerButton’s automatic handling of
color shading makes it superior to what
is provided by Borland within the pack-
age. http://www.tornado.be/~fdev/com-
ponents.html
Instant Productivity Award: TFileDrag.
Adding file drag-and-drop capabilities
from Windows Explorer into your appli-
cation is a breeze with Erik C. Nielsen’s
TFileDrag component. You can insert
this VCL component into your form
and have it supply a list of files being
dropped into your application. Then
you can do what you like with them.
http://SunSITE.icm.edu.pl/delphi/ftp/-
d20free/fdrag10.zip
Workman Award: xProcs.
While not as glamorous as some of the
VCL components we’re talking about,
Fabula Software’s xProcs is a freeware
collection of 150 general-purpose func-
tions that are useful in almost any appli-
cation. http://ourworld.compuserve.-
com/homepages/stefc/xprocs.zip
Plug-and-Play Award: TJustOne.
Preventing multiple instances of an
application involves some knowledge of
the Windows API. Steve Keyser’s
TJustOne component allows you to add
this capability to your application with-
out writing a single line of code.
http://carbohyd.siobc.ras.ru/torry/vcl/-
system/justone.zip
Speed ’Em Up Award: THETreeView.
The TreeView is one of the most power-
ful organizing controls for the Windows
user interfaces. However, Delphi’s
TTreeView is slow in performing certain
routines. Haakon Eines’ THETreeView
is an optimized version of the standard
Delphi component, and can tremen-
dously expedite loading and saving.
http://SunSITE.icm.edu.pl/delphi/ftp/-
d20free/hetrview.zip
Office 97 Award: TOfficeLabel.
Alexander Meeder’s TOfficeLabel (and
TOfficeButton) emulates the look of
the labels and buttons of the Personal
Assistant in Microsoft Office 97.
These controls look particularly
attractive on wallpapered forms.
http://carbohyd.siobc.ras.ru/torry/-
vcl/packs/ocontrls.zip
Colorizer Award: TColorButton.
Emulating the capabilities of IE,
Steven Costa Martins’ TColorButton
makes picking a color easy and intui-
tive. This button component allows a
user to push a button to display the
common control’s Color dialog box.
After a color is selected, the button
face reflects the chosen color.
http://www.intermid.com/delphi/-
download/colorbtn.zip
Now that you’ve seen my favorites, I’d
like to hear from you. What other qual-
ity freeware or shareware components
have been useful to you? ∆

— Richard Wagner

Richard Wagner is Contributing Editor to
Delphi Informant and Chief echnology
Officer of Acadia Software in the Boston,
MA area. He welcomes your comments at
rwagner@acadians.com.

	Table of Contents
	Delphi Tools
	HREF Tools Launches WebHub 1.0
	CT-Connect Now Available from Plains Technology
	Pinnacle Publishing Releases Graphics Server 5.0
	Logic Process Ships DataSentry Data Maintenance Utility and SelfCheck API

	Newsline
	Borland Files Suit Against Microsoft for Unfair Competition
	Delphi 3 Includes Microsoft Internet Explorer 3.0
	Borland Unveils Multi-Tier Distributed Application Service Suite for Windows NT
	Softbite Announces 1997 Delphi/C++Builder World Tour with Java
	Borland Appoints New CFO

	QuickReport 2.0: Part I
	QuickReport Basics
	Adding a QuickReport
	Defining the Report Bands
	Attaching the QuickReport DataSet
	Placing Printable Elements
	Previewing a QuickReport at Design Time
	Using a QuickReport in an Application
	Printing in a Background Thread
	Using Child Bands
	Using the Report Settings Dialog Box
	Conclusion

	Extending QuickReport: Part I
	Customizing the Previewer
	Zooming In
	Page Navigation
	Printing
	Finishing Up
	A Database Grid
	Grid Properties
	Displaying the Grid
	Column Headings
	Changes as They Occur
	What Does It Look Like?
	Conclusion
	Listing One —Navigating Pages
	Listing Two —Printing Selected Pages

	Nice and Nicer
	How Are Classes Used?
	How Are Classes Misused?
	The Create Constructor
	The Destroy Destructor
	The Equals Function
	The Clone Constructor and Copy Procedure
	The Nicer Class
	The Payoff
	Listing Three — UTAnoKid.pas

	Hop on POP
	Why?
	A Program Named DelphiEmail
	Getting Started
	Another State Machine
	Will Our Mystery Guest Please Sign In?
	Ask and You Shall Receive
	You’ve Got It, Now Get Rid of It
	Your Mileage May Vary

	Conclusion

	Columns & Rows
	Encrypted Tables
	Auxiliary Passwords
	Where Are Passwords Stored?
	The BDE Session Password Buffer
	Use Caution when Assigning Passwords
	Delphi TSession Methods and Events
	Side Effects of Encrypting Tables
	How Secure Is the Password?
	Table Language
	Last Call

	Greater Delphi
	Physical Security
	OS Security
	InterBase Security
	Providing REFERENCES
	Advanced GRANT
	GRANTing to Others
	Revoking Privileges
	Watch What You DROP
	Conclusion

	Visual Programming
	The Dialog Box
	The TComponentEditor Object
	Installation and Use
	Conclusion
	Reference
	Listing Four —EDITPANL.PAS

	Op Tech
	Tying a Component to a DLL
	16- and 32-bit Resource Files
	16- and 32-bit Component Portability
	Conclusion

	Delphi at Work
	Real-World Databases
	Matchmaker, Matchmaker
	Many-to-Many Modeling
	Resolving Many-to-Manys
	Application Overview
	Creating Tables
	Rousing the Browser
	Data, Data Everywhere
	Checking Our Perspective
	Dynamically Changing Field Properties
	Grid Resizing
	Testing the Swap
	Taking Inventory
	Details, Details
	Finding Skilled People
	Adding People and Skills
	Editing Across the Join
	Fooling the BDE Interface
	Skillful Zooming
	Dynamic Duo
	Helpful Resources
	Afterthoughts
	Listing Five — SkillSet.pas
	Listing Six — Browser.pas
	Listing Seven — M2MEdit.dfm
	Listing Eight — M2MEdit.pas

	New & Used
	A Guided Tour
	Strengths and Weaknesses
	Who Needs It?

	Text File
	Delphi Component Design
	Building Internet Applications with Delphi 2

	File I New
	Best Look Award: TExplorerButton.
	Instant Productivity Award: TFileDrag.
	Workman Award: xProcs.
	Plug-and-Play Award: TJustOne.
	Speed ’Em Up Award: THETreeView.
	Office 97 Award: TOfficeLabel.
	Colorizer Award: TColorButton.

